CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1-14</td>
</tr>
<tr>
<td>II</td>
<td>REVIEW OF LITERATURE</td>
<td>15-60</td>
</tr>
<tr>
<td>III</td>
<td>MATERIALS & METHODS</td>
<td>61-91</td>
</tr>
<tr>
<td>IV</td>
<td>RESULTS & DISCUSSION</td>
<td>92-251</td>
</tr>
</tbody>
</table>

4.1 Isolation and identification of the causal organisms: 92
4.2 Pathogenicity test 92
4.3 Isolation and Identification of bacterial strains 93
4.3.1 Morphological characteristics of bacterial strains 93
4.4 Studies on the sporulation and growth of rice blast fungus, *Pyricularia grisea* 102
4.4.1 Effect of various media on sporulation 102
4.4.2 Effect of incubation period on sporulation 103
4.4.3 Effect of various media and incubation period on fungal mycelial growth 103
4.4.4 Effect of various media and incubation period on fungal mycelial weight 103
4.5 Screening and selection of bacterial strains through *in-vitro* antagonism against rice blast fungus, *Pyricularia grisea*. 119
4.5.1 *In vitro* antibiosis test with live organisms 119
4.6 Identification of potential bacterial strains 133
4.7 Production of Siderophore 137
4.7.1 Siderophore production and *in-vitro* antagonism of potential bacterial strains against *Pyricularia grisea* and *Rhizoctonia oryzae-sativae* on Fe-deficient and Fe-fortified King’s B-medium (With FeCl$_3$100uM). 137
4.7.2 UV-visible spectrophotometric analysis for detection of siderophore production of potential bacterial strains grown on succinate medium. 144
4.8 *In vitro* antifungal activity 146
4.9 Selection of potential bacterial strain for induction of disease resistance against aggregate sheath spot pathogen, *Rhizoctonia oryzae-sativae* along with biomass improvement of rice under green house and gnotobiotic conditions. 157
4.9.1 Growth promotion and disease suppression studies under green house condition. A general view of the rice plants under different treatments in green house conditions (At 20, 40 and 60 days of treatment). 157
4.9.2 The salient findings of growth promotion and disease suppression studies under green house conditions. 157
4.9.2.1 Effect of bacterization on occurrence of disease incidence. 157
4.9.2.2 Effect of bacterization on growth promotion 159
4.9.2.3 Effect of bacterization on biomass of shoot and root. 162
4.9.2.4 Effect of bacterization on chlorophyll content 167
4.9.3 Growth promotion and disease suppression studies under gnotobiotic conditions 172

4.10 Isolation of promising bioactive metabolites and their utilization in growth promotion and induction of disease resistance in rice under gnotobiotic condition 180

4.10.1 In-vitro antibiosis test with bioactive metabolites 180

4.10.2 Effect of bioactive metabolites for induced resistance in rice against aggregate sheath spot disease fungus under gnotobiotic condition 185

4.11 Study of rice sheath and stem tissues colonization with R.oryzae pathogen 189

4.11.1 Microscopic observation of rice sheath and stem tissues of R. oryzae sativae treated rice seedlings 189

4.11.2 Scanning Electron Microscope (SEM) 192

4.11.2.1 Electron microscopy analyses of rice stem tissues 192

4.11.2.2 Electron microscopy analysis of rice fungal pathogens 195

4.12 Molecular characterization of phytopathogenic fungi of rice crop 200

4.12.1 Genomic DNA isolation 200

4.12.2 Quantitative analysis by Spectrophotometer 200

4.12.3 Qualitative analysis by Gel Electrophoresis 200

4.12.4 PCR analysis 201

4.12.5 Molecular variability by using RAPD technique 206

4.13 Identification of a microbial culture using D1/D2 region of LSU (Large SubUnit: 28S rDNA) based molecular technique. 236

4.13.1 Identification of Pyricularia grisea [teleomorph Magnaporthe grisea (Herbert) Barr] 236

4.13.2 Identification of Rhizoctonia oryzae-sativae [teleomorph Ceratorhiza oryzae-sativa] 244

Chapter V SUMMARY 252-258

BIBLIOGRAPHY 259-307

Appendix 1- List of publications