List of Figure

<table>
<thead>
<tr>
<th>Figure no.</th>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>(a) Possible technologies and devices beyond CMOS and Moore’s law suggested by ITRS [2] (b) Next generation of flexible electronics system [5]</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Correlation between mobility of TFTs and switching speed</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>The emerging nanocarbons [1]</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Ternary phase diagram of DLC [28]</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>The density of electronic states in amorphous silicon [88]</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The three main mechanisms of transport in amorphous silicon [88]</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>(a) Conductivity of monolayer of Graphene vs. gate voltage (b) The Quantum Hall Effect in single layer Graphene [102]</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Two mechanisms of charge transfer between two localized states: A) Hopping of a charge carrier from one localized state to another upon receiving enough energy to overcome the activation energy barrier EA, and B) direct tunneling between the two states [117].</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Operation of SEM [104]</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Atomic force microscope operation [119]</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Raman spectrum of nanocarbon materials.</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Schematic diagram of the XPS process, showing the photoionization of an atom by the ejection of a 1s electron.</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Description of symmetries of C-H IR vibration modes [126].</td>
<td>37</td>
</tr>
</tbody>
</table>
Figure 3.6 Flow chart of spectroscopy ellipsometry analysis. Data used here as an example and does not reflect actual measurements [128].

Figure 3.7 A Tauc type plot estimating the optical band gap of a thin film [129].

Figure 3.8 Plot of dark conductivity with error bars.

Figure 3.9 Setup for current vs voltage measurement in coplanar configuration (a) schematic of set up (b) Wooden box setup.

Figure 3.10 Setup for current vs voltage measurement in sandwich configuration (a) schematic of set up (b) actual setup.

Figure 3.11 High temperature and low temperature conductivity measurement setup in NPL, New Delhi.

Figure 3.12 Schematic of nanocluster carbon thin film MIS structure setup.

Figure 3.13 C–V characteristic of crystalline and disordered semiconductor [130].

Figure 3.14 Schematic of the cathodic arc process.

Figure 4.1 (a) Atomic smooth film without nitrogen and helium gas (b) Atomic smooth film with N2=10^{−4} Torr and no helium gas.

Figure 4.2 SEM pictures of nanocluster carbon films grown with a nitrogen partial pressure of 10^{−4} Torr, under helium partial pressure of (a) 5 x 10^{−4} Torr (b) 5 x 10^{−3} Torr.

Figure 4.3 SEM pictures of nanocluster carbon films grown with a nitrogen partial pressure of 10^{−3} Torr, under helium partial pressure of (a) 0.05 Torr (b) 0.1 Torr (c) 0.5 Torr.

Figure 4.4 SEM image of fixed N2 doped with varying Hydrogen content Nanocluster carbon thin films. N2 fixed at 10^{−3} Torr (a) Sample H1, H2=0 Torr (b) Sample H2, H2=10^{−4} Torr (c) Sample H3, H2=5x10^{−4} Torr (d) Sample H4, H2=10^{−3} Torr (e) Sample H5, H2=10^{−2} Torr.
Figure 4.5 Raman spectra of nanocluster carbon film with (a) No N2, No He (b) N2=10^{-4} Torr, No He.

Figure 4.6 Raman spectra of nanocluster carbon films grown under varying helium partial pressures of (a) 5x10^{-4} Torr, 5x10^{-3} Torr and 0.5 Torr with fixed nitrogen partial pressure of 10^{-4} Torr (b) deconvoluted spectrum of one film.

Figure 4.7 Raman spectra of nanocluster carbon films grown under varying helium partial pressures of (a) 0.05 Torr, 0.1 Torr and 0.5 Torr with fixed nitrogen partial pressure of 10^{-3} Torr (b) deconvoluted spectrum of one film.

Figure 4.8 Variation of Raman parameters (a) ID/IG ratio (b) width of G peak of the nanocluster carbon thin films with varying He/N2 ratio.

Figure 4.9 Raman spectroscopy of the Nanocluster carbon thin films under varying hydrogen and fixed nitrogen partial pressure. N2 fixed at 10^{-3} Torr (a) Sample H1, H2=0 Torr (b) Sample H2, H2=10^{-4} Torr (c) Sample H3, H2=5x10^{-4} Torr (d) Sample H4, H2=10^{-3} Torr (e) Sample H5, H2=10^{-2} Torr.

Figure 4.10 Variation of (a) G–peak position (b) Full width half maximum G, Γ (c) I(D)/I(G) ratio w.r.t H2/N2 ratio of nanocluster carbon films. Here, N2 pressure is fixed at 10^{-3} Torr. Broken lines are guide to the eye.

Figure 4.11 Raman spectra of nanocluster carbon thin films grown with different ion energy of (a) 20 eV (b) 30 eV (c) 70 eV (d) 80 eV.

Figure 4.12 Transmittance spectra of Nanocluster carbon thin films grown using under varying condition of helium partial pressure.

Figure 4.13 Wide XPS spectrum of a nanocluster carbon thin film grown using cathodic arc process.
Figure 4.14 XPS spectra of nanocluster carbon films prepared using cathodic arc process under different ion energies.

Figure 4.15 Fit of the C1s peak from an XPS spectrum using the three curve method.

Figure 4.16 Typical N (E) plot of the nanocluster carbon thin films.

Figure 4.17 Variation of density and sp³ fraction of the nanocarbon films with respect to different ion energies.

Figure 4.18 Transmission spectra of the nanocluster carbon thin films.

Figure 4.19 The (ahv)¹/² vs hv plot of the Nanocluster carbon thin films.

Figure 4.20 ln(α) vs E plot of the Nanocluster carbon thin films.

Figure 4.21 Three-phase model for nanocluster carbon thin films.

Figure 4.22 Experimental SE spectra and their best fit curves for Nanocluster carbon thin film (a) ψ for Sample A (b) ∆ for Sample A.

Figure 4.23 The variations of the optical constants of the nanocluster carbon films (a) refractive index n and (b) extinction coefficient k.

Figure 4.24 Plot of optical band gap of nanocluster carbon thin films with respect to photon energy. The deposition conditions are shown in the inset.

Figure 4.25 Graphs of (a) resistivity, (b) band gap variations with respect to the ion energy. All properties are correlated to each other. The optical gap and the resistivity values are seen to drop sharply at higher ion energies.

Figure 5.1 Variation of dark conductivity with respect to temperature for nanocluster carbon films grown under diverse deposition conditions.

Figure 5.2 Variation of dark conductivity with respect to temperature for nanocluster carbon films grown under
varying deposition ion energies.

Figure 5.3 Plot of $\sigma T^{1/2}$ versus $T^{-1/4}$ of nanocluster carbon thin films under different deposition ion energies.

Figure 5.4 Variation of disorder parameter T_0 and conductivity pre–factor with respect to the different deposition ion energies. Lines are guide to the eye.

Figure 5.5 Variation of conductivity of nanocluster carbon thin films with respect to (a) arc current (b) throw distance.

Figure 5.6 Conductivity variations with respect to $1000/T$ for nanocluster carbon thin films grown under varying helium partial pressures with fixed nitrogen pressure of 10^{-4} Torr.

Figure 5.7 Conductivity variations with respect to $1000/T$ for nanocluster carbon thin films grown under varying helium partial pressures with fixed nitrogen pressure of 10^{-3} Torr.

Figure 5.8 Plot of the activation energy versus He/N2 ratio, N2 fixed at 10^{-4} Torr and plot of the activation energy versus He/N2 ratio, N2 fixed at 10^{-3} Torr.

Figure 5.9 Variation of dark conductivity versus inverse of temperature for nanocluster carbon thin films grown under varying H2 gas pressures and fixed N2 pressure of 10^{-3} Torr.

Figure 5.10 (a) Variation of the room temperature conductivity σ_{RT} and activation energy as a function of the ID/IG ratio obtained for all the films. The lines are guide for the eye. (b) Variation of the room temperature conductivity σ_{RT} as a function of the FWHMG obtained for all the films. Lines are guide to eye.

Figure 5.11 Conductivity versus $T^{-1/4}$ plot of the nanocluster carbon thin films.

Figure 5.12 Conductivity variations with respect to various
parameters (a) ion energy, throw distance and arc current (b) fixed Nitrogen with varying Helium (c) fixed Nitrogen with varying Hydrogen (d) Maximum and minimum conductivity data variation with respect to all deposition parameter.

Figure 5.13 Exponential pre–factor σ_0 plotted against the activation energy E_a for different nanocluster carbon thin samples.

Figure 5.14 Current-Voltage characteristic of nanocluster carbon thin film.

Figure 5.15 Logarithmic I–V plot of the nanocluster carbon thin films showing electronic charge behavior under varying voltage.

Figure 5.16 Experimental observation of traps of nanocluster carbon thin films (a) , (b) and (c) show discrete shallow trap and (d) and (e) shows exponential trap behavior.

Figure 5.17 (a) Capacitance–Voltage characteristics of Al/Nanocluster carbon/c–Si MIS structures (b) Plot of $1/C^2$ versus V of Al/NC thin film/c-Si MIS structure in depletion region.

Figure 5.18 Photoconductivity and Dark conductivity of the C1 nanocluster carbon thin sample.

Figure 5.19 Photoconductivity and dark conductivity of the C6 nanocluster carbon sample.

Figure 6.1 Microton source for irradiation of nanocluster carbon thin films in Microton Centre, Mangalore University.

Figure 6.2 3D AFM micrographs for (a) non-irradiated NC film, and electron irradiated with doses of (b) 500 Gy (c) 1000 Gy (d) 2000 Gy.

Figure 6.3 Variation of surface roughness with respect to electron doses of irradiated NC thin films.

Figure 6.4 Raman spectra of non-irradiated and irradiated NC thin films.
Figure 6.5 Variation of (a) G–peak position and FWHMG with irradiation doses (b) ID/IG ratio with irradiation doses.

Figure 6.6 DOS and electrical conductivity variation with respect to electron doses of irradiated NC thin films.

Figure 7.1 Different structures of TFT [224]

Figure 7.2 Basic characteristic of a TFT [242]

Figure 7.3 Linear fit on square root of transfer characteristics of a TFT [228].

Figure 7.4 Illustration of the density of defect states within the band gap of disordered materials such as amorphous, polycrystalline, and nano crystalline silicon [241].

Figure 7.5 Structure used for two dimensional simulation of bottom gate TFT using SILVACO TCAD.

Figure 7.6 Simulated drains characteristics for different values of gate to source bias.

Figure 7.7 Transfer characteristic of nanocluster carbon thin film TFT.

Figure 7.8 (a) Transfer characteristic and (b) plot of square root of I_{ds} vs V_{gs} of nanocluster carbon thin films.