List of Tables

Table 1.1 Human and mammalian toxicity and side effect protein targets of Ibuprofen.
Table 1.2 The protein target candidates of vitamin E.
Table 1.3 The results of inverse docking of eight active compounds using five docking schemes.
Table 1.4 The results of inverse docking of four protein targets using a combination of pharmacophore and docking analysis.
Table 1.5 List of pharmacophore features classification by functional groups and extended points.
Table 2.1 List of inhibitors in the active dataset with experimental pIC$_{50}$, docking energy and predicted biological activities.
Table 2.2 Experimentally validated active site residues and calculated pseudocenters of Fab enzymes.
Table 2.3 Calculated shape and molecular field point (MFP) descriptors of the active dataset.
Table 2.4 Calculated shape and molecular field point (MFP) descriptors of the external test set.
Table 2.5 List of molecules of the external test set with calculated docking energy and predicted biological activities.
Table 2.6 Rank list of the external test set molecules sorted by docking energy, predicted pIC$_{50}$ values from MFP-QSAR and MLP models.
Table 2.7 Probable ligand hits (common molecules) retrieved from the rank list of docking, MFP-QSAR and MLP experiments.
Table 2.8 Statistical regression relationship among docking energy, predicted pIC$_{50}$ values of MFP-QSAR and MLP models.
Table 2.9 Statistical parameters used to validate MFP-QSAR and MLP models.
Table 3.1 A summary of selected receptor and ligand-based methods, its importance and its applications in inverse docking experiments.
Table 3.2 Source of information to identify functional residues in Candida albicans protein structures to define cavity.
Table 3.3 Structure of 7,8-dialkyl-1,3-diaminopyrrolo-[3,2-f] quinazolines and its experimental and predicted activities calculated using MFP-QSAR model.

Table 3.4 The calculated docking energies of probes and reference molecule.

Table 3.5 The pharmacophore features and scaled energy factors of probes and reference molecule.

Table 3.6 The pharmacophore-based energy factors of probes and reference molecule and scaled energy profile of probe molecules.

Table 3.7 Top scoring molecular targets of CaDHFR inhibitors.

Table 4.1 List of non-redundant protein structures from Spinach proteome in PDB (May, 2014).

Table 4.2 Prioritized protein list of Spinach PDB proteome obtained from idTarget screening.

Table 4.3 Homologous proteins of Spinach PDB proteome obtained from ReverseScreen3D screening.

Table 4.4 Study of seed viability and seedling vigour of Spinach plant on MS media supplemented with different concentrations of kinetin.

Table 5.1 R1 specific fragment molecules.

Table 5.2 R2 specific fragment molecules.

Table 5.3 Selected pharmacophoric descriptors for PS-QSAR model development.

Table 5.4 Computed descriptors of R1 fragment training molecules.

Table 5.5 Computed descriptors of R2 fragment training molecules.

Table 5.6 Computed Eigen values and variability across six factors.

Table 5.7 Correlation matrix among various pharmacophoric descriptors from R1 fragment training molecules.

Table 5.8 Correlation matrix among various pharmacophoric descriptors from R2 fragment training molecules.

Table 5.9 Correlation between R1 fragment pharmacophoric descriptors and its PCA factors.
Table 5.10 Correlation between R2 fragment pharmacophoric descriptors and its PCA factors.

Table 5.11 Factor scores of R1 fragment training, test and external test set molecules.

Table 5.12 Factor scores of R2 fragment training, test and external test set molecules.

Table 5.13 Scaled and predicted R1 and R2 specific activities for training, test and external set molecules.

Table 5.14 Z score and percentiles computed for R1 and R2 fragment training, test and external test set molecules