List of Figures

Figure 1.1 Workflow of MDock program.
Figure 1.2 Workflow of INVDOCK program.
Figure 1.3 Workflow of TarFisDock program.
Figure 1.4 Workflow of ICMDock program.
Figure 1.5 Workflow of several docking programs in inverse mode.
Figure 1.6 Structure of PRIMA-1 and oxidosqualene cyclase (OSC), identified as a possible target of PRIMA-1.
Figure 1.7 Structure of estrogen receptor identified as a possible target of Ibuprofen.
Figure 1.8 The map of large-scale docking results with the application of specific scoring thresholds for each protein.
Figure 1.9 Pharmacophore features mapped in the (3-methyl-1-[4-(trifluoromethyl)-7-benzofuranyl]piperazine, a 5-HT2c agonist.
Figure 1.10 The steps involved in pharmacophore modeling.
Figure 1.11 The steps involved in ligand and receptor pharmacophore modeling.
Figure 1.12 The molecular interaction field contour map developed by field-based QSAR methods.
Figure 2.1 The binding modes of (-)epicatechin gallate, (-)epigallocatechin gallate and (-)gallocatechin gallate with FabG, FabI and FabZ enzymes.
Figure 2.2 The binding mode of the most probable ligand hits across Fab enzymes.
Figure 2.3 The ESP surface of (-)epicatechin gallate based on atom properties rendered by Jmol program, the numbering scheme of flavone scaffold and the consensus pseudocenter map of aligned Fab enzymes with (-)epicatechin gallate.
Figure 2.4 The spatial chemical binding pattern of FabG, FabI and FabZ enzymes. The consensus pharmacophore map of Fab inhibitors from active dataset viz. FabG, FabI and FabZ inhibitors.
Figure 2.5 Scatter plot depicting the relationship among docking energy, predicted pIC50 values from MFP-QSAR and MLP models for active and external test set.
Figure 2.6 The mapped molecular field points of FabG, FabI and FabZ inhibitors.
Figure 2.7 The contribution chart of mapped 3D MFP descriptors calculated from enzyme specific MFP-QSARs viz. FabG, FabI and FabZ inhibitors.

Figure 2.8 Rendered ESP surface of most probable ligand hits from external test set across Fab enzymes.

Figure 2.9 The 3D overlay of mapped molecular field points and consensus pharmacophore features of FabG, FabI and FabZ external test set candidates.

Figure 2.10 HYDE prediction of favored and disfavored regions for probable hits.

Figure 3.1 The outline of the selected receptor and ligand-based methods used to calculate various energy parameters.

Figure 3.2 Scatter plot of the actual and predicted pKi from MFP-QSAR model and its contribution in activity determination.

Figure 3.3 The molecular field plot of selected QSAR model with mapped MFP descriptors.

Figure 3.4 Inter field point distances of mapped descriptors.

Figure 3.5 Structure of designed probe molecules - mapped and inverse probes.

Figure 3.6 The predicted docked poses of probe and reference molecules against selected protein cases.

Figure 3.7 kNN cluster of reference molecule based docking energy and scaled energy profile of Candida albicans proteins.

Figure 3.8 The docked conformations of probe and reference molecules against protein targets viz. DHFR (cavity 11), alpha subunit of mRNA capping enzyme (cavity 18), N-myristoyltransferase (cavity 21) and phosphoacetylglucosamine mutase (cavity 22).

Figure 3.9 Computed dock poses of the reference molecule with most probable protein targets. DHFR (cavity 11), alpha subunit of mRNA capping enzyme (cavity 18) and N-myristoyltransferase (cavity 21).

Figure 4.1 Spinach (Spinacia oleracea) and the structure of kinetin.

Figure 4.2 Docked poses of kinetin with the prioritized protein targets of Spinach and Yeast chitinase 1 (2UY5).

Figure 4.3 3D ligand superposition of co-crystallized ligands from selected homologous proteins of Spinach targetome.
Figure 4.4 Sequence alignment of Spinach chitinase protein and selected template, chitinase from *Parkia platycephala* seeds (2GSJ, chain A).

Figure 4.5 The homology model of Spinach chitinase protein developed using the PDB template of *Parkia platycephala* chitinase (2GSJ).

Figure 4.6 Ramachandran plot of the modelled Spinach chitinase protein.

Figure 4.7 The interactions of kinetin with Yeast chitinase 1 was deduced from the experimental structure (2UY5) and its contacts with Spinach chitinase proteins was predicted from docking approach.

Figure 4.8 Effect of kinetin on Spinach seed germination in various concentrations.

Figure 5.1 The original dataset of 3-hydroxypyridinone (HPO) derivatives used to generate fragment molecules.

Figure 5.2 The general structure of 3-hydroxypyridinone (HPO) derivatives.

Figure 5.3 The alignment of HPO derivatives and its perceived pharmacophore features.

Figure 5.4 Two dimensional topological pharmacophoric feature, H-D10-HBA mapped on R1d molecule.

Figure 5.5 Graphical illustration of the Eigen values and cumulative variability showing its variability across factors from R1 and R2 descriptor sets and its space plot over F1 and F2.

Figure 5.6 Three-layer neural network developed for R1 fragment molecules.

Figure 5.7 The plot of training error versus number of learning cycles obtained from R1 and R2-specific neural networks.

Figure 5.8 Scatter plots of scaled versus predicted biological activities for R1 and R2 molecular set.

Figure 5.9 Histogram showing the statistics of Δr^2_m value developed from activity prediction from PS-QSAR models.

Figure 5.10 Plots of Z scores based on scaled and predicted biological activities for training (R1 and R2) and test and external test (R1 and R2) molecules.

Figure 5.11 Group-based activity contribution chart for the test set molecules.

Figure 5.12 Group-based activity contribution chart for the external test set molecules.