List of Figures

Fig. 1.1 Block diagram of a nuclear reactor
Fig. 1.2 Neutron absorption cross section at (a) high energies and (b) low energies
Fig. 1.3 Phase diagram of the system B-O-C by Elliott
Fig. 1.4 a) The rhombohedral crystal structure of boron carbide
 b) The \(B_4C_2 \) rings and bonding structure of boron carbide
Fig. 2.1 A schematic of the graphite boat
Fig. 2.2 A schematic of the graphite cylinder (B) with lids (A)
Fig. 2.3 A Schematic of SS vessel and SS reactor
Fig. 2.4 A schematic of quartz vessel with spiral vent tube
Fig. 2.5 The schematic of components of an FTIR
Fig. 3.1 a and b The equilibrium composition of condensed species and gaseous species
 over the temperature range 273–3573 K for CBMR of 3.5
Fig. 3.1 c and d The equilibrium composition of condensed species and gaseous species
 over the temperature range 273–3573 K for CBMR of 1.75
Fig. 3.1 e and f The equilibrium composition of condensed species and gaseous species
 over the temperature range 273–3573 K for CBMR of 1
Fig. 3.1 g and h The equilibrium composition of condensed species and gaseous species
 over the temperature range 273–3573 K for CBMR of 0.7
Fig. 3.1 i and j The equilibrium composition of condensed species and gaseous species
 over the temperature range 273–3573 K for CBMR of 0.5
Fig. 3.2 Stability diagram of B-O-C system at 0.98 bar pressure
Fig. 3.3 Stability diagram of B-O-C system at 0.098 bar pressure
Fig. 3.4 Variation of equilibrium concentration of boron carbide with number of moles of water in the carrier gas (CBMR =3.3 at different temperatures)

Fig. 3.5 Variation of equilibrium vapour pressure of the (a) oxides of boron and (b) hydrogen borates with temperature for stoichiometric CBMR (=3.3).

Fig. 4.1 Photograph of typical XSG1000

Fig. 4.2 The scheme of preparation of B₄C from boric acid-sucrose xerogel

Fig. 4.3 IR Spectra of XSG and XSG1000

Fig. 4.4 Variation of amount of boron and carbon in the reaction product with the diameter of the cylinder orifice when precursor XSG1000 was heat treated at 1823 K for 3 h

Fig. 4.5 X-ray diffraction patterns of the precursor and heat-treated products

Fig. 4.6 X-ray diffraction pattern of XSGC0.5

Fig. 4.7 Williamson–Hall plot pertaining to XSGC0.5

Fig. 4.8 Scanning electron micrograph of XSGC0.5

Fig. 4.9 Transmission electron micrograph of XSGC0.5. The inset shows the SAD pattern of nanocrystalline boron carbide

Fig. 4.10 Particle size distribution of XSGC0.5

Fig. 4.11 The scheme of preparation of B₄C from boric acid-citric acid xerogel

Fig. 4.12 The IR spectra of XCG and XCG600

Fig. 4.13 X-ray diffraction pattern of the precursor (XCG500, XCG600, XCG700 and XCG800) and heat-treated products

Fig. 4.14 X-ray diffraction pattern of XCG61550

Fig. 4.15 Scanning electron micrograph of XCG61550
Fig. 4.16 The scheme of preparation of boron carbide from boric oxide-citric acid gel precursor

Fig. 4.17 X-ray diffraction pattern of the precursor and heat-treated products

Fig. 4.18 X-ray diffraction pattern of BOC71550

Fig. 4.19 Scanning electron micrograph of BOC71550

Fig. 4.20 The particle size distribution of BOC71550

Fig. 4.21 The scheme of preparation of boron carbide from boric oxide-sucrose gel precursor

Fig. 4.22 X-ray diffraction pattern of the precursors

Fig. 4.23 X-ray diffraction patterns of the heat-treated products

Fig. 4.24 X-ray diffraction patterns of BOS515, BOS615, BOS715 and BOS815

Fig. 4.25 Williamson–Hall plot pertaining to BOS615

Fig. 4.26 Scanning electron micrograph of BOS615

Fig. 4.27 The particle size distribution of BOS615

Fig. 5.1 Room temperature XRD patterns of N-B$_4$C and M-B$_4$C.

Fig. 5.2 The variation of lattice parameter (a) with temperature for both N-B$_4$C and M-B$_4$C (polynomial fit is also shown).

Fig. 5.3 The variation of lattice parameter (c) with temperature for both N-B$_4$C and M-B$_4$C (polynomial fit is also shown).

Fig. 5.4 The percentage linear thermal expansion estimated from the lattice parameter of both N-B$_4$C and M-B$_4$C along both a and c axis

Fig. 6.1 Variation of digestion time and quantity of nitric acid with average particle size
List of Tables

Table 1.1 Nuclear properties of elements envisaged as neutron absorbers
Table 1.2 Physical properties of boron carbide
Table 2.1 ICP-MS instrumental operating conditions
Table 3.1 List of species considered for the calculations
Table 3.2 Phase transitions observed during the carbothermic reduction
Table 3.3 Possible reactions of boron carbide with the oxides of boron and interconversion among the oxides of boron
Table 3.4 Details of experimental studies on carbothermic reduction of boric oxide
Table 4.1 Summary of studies reported in the literature on the synthesis of boron carbide from gel precursors
Table 4.2 Chemical analyses of XSG, XSG1000, XSG1552h and XSG1553h
Table 4.3 Chemical analyses of the boron carbide obtained after heat treating XSG1000 at 1823 K for 3 h in a graphite cylinder with lids
Table 4.4 Chemical analysis of XCG, XCG500, XCG600, XCG700, XCG800 and XCG61550
Table 4.5 The results of chemical analyses of the BOC500, BOC600, BOC700, BOC800 and BOC71550
Table 4.6 Results of the chemical analyses of the precursors BOS500, BOS600, BOS700 and BOS800
Table 4.7 Results of the chemical analysis of BOS515, BOS615, BOS715 and BOS815
Table 4.8 Summary of studies carried out on the synthesis of nanocrystalline boron carbide

Table 5.1 The lattice parameter, %thermal expansion as a function of temperature, instantaneous (α_i), mean (α_m), relative (α_r), average (α_{ave}) thermal expansivities for nanocrystalline boron carbide

Table 5.2 The lattice parameter, %thermal expansion as a function of temperature, instantaneous (α_i), mean (α_m), relative (α_r), average (α_{ave}) thermal expansivities for microcrystalline boron carbide

Table 6.1 Variation of the digestion time and volume of nitric acid required for digestion of boron carbide with particle size

Table 6.2 Results of analysis of boron in boron carbide

Table 6.3 Results of the recoveries of trace elements by standard addition method (digestion by the present method)

Table 6.4 Results of the analysis of trace elements in boron carbide (digestion of boron carbide by the present method) by ICP-MS

Table 6.5 Comparison of limits of detection for trace metals present in boron carbide determined in the present study with other methods reported in the literature. Limits of detection is given in μg g⁻¹

Table 6.6 10B/11B isotopic ratio in natural as well as enriched boron carbides