CHAPTER VII
CONCLUSION
CONCLUSION

The study was undertaken in Gauhati University with a goal to select high yielding Som morphotypes with faster growth rate responding to horticultural practices to get higher production with best quality of silk. In nature, ‘Som’ plants propagated through seeds. Being cross pollinated large genetic variability occur in seed grown population. As a result, a great number of morphological variations or morphotypes are observed in Som plantations. The macro and micro morphological variation may differentiate according to their growth, leaf-yield, shape and size of the leaf, colour. It was observed that the leaves of all morphotypes of som are not edible for muga silkworm, only the succulent, glabrous and palatable leaves are suitable for muga silkworm feeding which are preferred and eaten completely, some are partially or some are totally discarded by the healthy larvae as a result silkworm become unhealthy, irregular growth and susceptible to diseases. India is a tropical country and the environmental conditions are the limiting factors of muga silkworm rearing. Majority of rearers encounters the above problems and loose their crops or produce inferior quality of cocoon and silk. Based on the experiments and findings, the inference drawn in it is given below:

❖ Muga silk worm should be reared only with succulent, glabrous and palatable leaves. In nature expected quality of cocoon and silk is not achieved as Som plants propagated through seeds largely varied genetically
❖ *Makaria Som*, poor quality of foliage, partially edible or some are totally discarded during rearing. It affects the effective rate of rearing, larval weight, larval duration, cocoon weight, shell weights, denier, and reelability significantly.
❖ Various factors i.e. optimum temperature and relative humidity etc. and infrastructure required for rearing of silkworm larvae are difficult to ensure at the level of individual farmers and the rearing should be conducted in a
systematic homogeneous plantation which facilitates proper development of muga silkworm through better nutrition rearing results, disease resistance, etc.

❖ A healthy larva is more robust and thereby resistant to diseases. It can be expected only by providing more succulent, high moisture content leaves during rearing.

❖ A plantation with uniform characteristics homogeneous nature will be ideal for uniform physiological condition, growth and development of muga silkworm.

❖ The traditional muga rearers have been using the age-old practices and muga silkworm exhibit different feeding habits to different types of Som morphotypes awareness programme should be organized.

❖ The better rearing performance and cocoon characters can be obtained when the larvae were fed with AS03, AS04, AS05, AS06, morphotypes.

❖ Jarua crop (Dec-Jan) low temperature and low humidity conditions rearing should be avoided as larvae unable to take leave, hence, larval period increases significantly. Aherua crop (Jun-Jul), high temperature (34-36 °), high humidity (81-91%) during rearing to be avoided as the larvae become susceptible to diseases due to their fluctuations, water stagnation in rearing field leading to high humidity, Wastage of early stage worms due to heavy rain and hailstorms, high incidence of pest and predators like ants, spiders, bugs, wasps, birds etc, high incidence of bacterial and viral diseases. During pre-seed and seed crops the climatic conditions mostly remain unsuitable with high incidence of diseases and heavy infestation of pest and predators.

By all the above modifications and suggestions, muga silkworm rearing may be conduct and quality of cocoons and silk can be improved where som morphotypes in plantation variation is more.