CHAPTER III

PRELIMINARIES

This brief chapter introduces definitions and notations that are used across Chapters IV, V and VI. Some well-known basic results on intervals that are relevant to the present work are also stated.

3.1 DEFINITIONS

DEFINITION 1: Domain
A set D with a total order is called a domain. For any $x, y \in D$, $x \leq y$ if x appears before y in the ordering.

DEFINITION 2: Interval
Given a domain D and $x, y \in D$, a subset $[x, y]$ of D defined by $\{z \mid x \leq z \leq y\}$ is called an interval.

DEFINITION 3: Endpoint
Given a domain D and a set B of brackets $\{[', ']\}$, an element (x, b) of $D \times B$ is called an endpoint. An endpoint $(x, '[')$ is called a left endpoint and an endpoint $(x, ']$) is called a right endpoint.

The set of left and right endpoints over a domain D will be denoted by $LE(D)$ and $RE(D)$ respectively. An element (L, R) of $LE(D) \times RE(D)$ can be associated with an interval $[x, y]$, where $L = (x, '[')$ and $R = (y, ']$).
In the set B, a total order ≤ is defined as ‘[’ ≤ ‘]’. Accordingly, a total order ≤ is obtained in the set of endpoints as follows:

\[(x, b_1) \leq (y, b_2) \text{ if } x < y \]

\[\text{ or }\]

\[\cdot \text{ if } x = y \text{ and } b_1 \leq b_2\]

e.g. \((3,]) \leq (4,]\)

\((2,] \leq (2,]\)

DEFINITION 4: Interval Transaction

An ordered pair \((\text{tid}, I)\) is called an interval transaction; \(\text{tid}\) is a transaction identifier and \(I\) is an interval. For a given interval transaction \(T = (\text{tid}, I)\), \(\text{intv}(T)\) denotes the interval \(I\).

DEFINITION 5: Endpoint of an interval transaction

If \(T\) is an interval transaction, then the endpoints of \(\text{intv}(T)\) are said to be the endpoints of \(T\).

DEFINITION 6: Interval Transaction Database

An interval transaction database \(\text{TDB}\) is a set of interval transactions.

DEFINITION 7: Endpoint in an interval transaction database

An endpoint is said to be in an interval transaction database \(\text{TDB}\) if it is an endpoint of some interval transaction in \(\text{TDB}\).

DEFINITION 8: Interval in an interval transaction database
An interval I is said to be in an interval transaction database TDB if $I = \text{intv}(T)$ for some interval transaction T in TDB.

3.2 SOME USEFUL RESULTS

1. $[a, b]$ is non-empty iff $a \leq b$

2. Suppose $[a, b]$ is non-empty, then

 (a) $[a, b] \subseteq [c, d]$ iff $c \leq a \leq b \leq d$

 (b) $[a, b] \subset [c, d]$ iff either $c < a$ and $b \leq d$ or $c \leq a$ and $b < d$

3. If the intersection of k intervals is non-empty, then it is an interval with endpoints from the k intervals.

The proofs of these well-known results are provided in Appendix I