CHAPTER III

PRELIMINARIES

This brief chapter introduces definitions and notations that are used across Chapters IV, V and VI. Some well-known basic results on intervals that are relevant to the present work are also stated.

3.1 DEFINITIONS

DEFINITION 1: Domain

A set D with a total order is called a domain. For any $x, y \in D, x \le y$ if x appears before y in the ordering.

DEFINITION 2: Interval

Given a domain D and x, $y \in D$, a subset [x, y] of D defined by $\{z \mid x \le z \le y\}$ is called an interval.

DEFINITION 3: Endpoint

Given a domain D and a set B of brackets $\{ (i', i') \}$, an element (x, b) of D x B is called an endpoint. An endpoint (x, i') is called a left endpoint and an endpoint (x, i') is called a right endpoint.

The set of left and right endpoints over a domain D will be denoted by LE(D) and RE(D) respectively. An element (L, R) of LE(D)×RE(D) can be associated with an interval [x, y], where L = (x, `[`) and R = (y, `]`).

In the set B, a total order \leq is defined as '[' \leq ']'. Accordingly, a total order \leq is obtained in the set of endpoints as follows:

$$(x, b_1) \le (y, b_2)$$
 if $x < y$
or
if $x = y$ and $b_1 \le b_2$
e.g. $(3,]) \le (4, [)$
 $(2, [) \le (2,])$

DEFINITION 4: Interval Transaction

An ordered pair (tid, I) is called an interval transaction; tid is a transaction identifier and I is an interval. For a given interval transaction T = (tid, I), intv(T) denotes the interval I.

DEFINTION 5: Endpoint of an interval transaction

If T is an interval transaction, then the endpoints of intv(T) are said to be the endpoints of T.

DEFINITION 6: Interval Transaction Database

An interval transaction database TDB is a set of interval transactions.

DEFINITION 7: Endpoint in an interval transaction database

An endpoint is said to be in an interval transaction database TDB if it is an endpoint of some interval transaction in TDB.

DEFINITION 8: Interval in an interval transaction database

An interval I is said to be in an interval transaction database TDB if I = intv(T) for some interval transaction T in TDB.

3.2 SOME USEFUL RESULTS

- 1. [a, b] is non-empty iff $a \le b$
- 2. Suppose [a, b] is non-empty, then
 - (a) $[a, b] \subseteq [c, d]$ iff $c \le a \le b \le d$
 - (b) $[a, b] \subset [c, d]$ iff either c < a and $b \le d$ or $c \le a$ and b < d
- 3. If the intersection of k intervals is non-empty, then it is an interval with endpoints from the k intervals.

The proofs of these well-known results are provided in Appendix I