<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Figure Captions</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>Estimation of world energy demand and available energy form conventional sources. [Adapted from http://www.plasma.inpe.br]</td>
<td>2</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Increase in global average temperature with increase in the CO₂ emission [Adapted from http://www.zfact.com]</td>
<td>3</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>Comparison of specific energies of different hydrocarbon fuels with that of hydrogen.</td>
<td>5</td>
</tr>
<tr>
<td>Fig. 1.4</td>
<td>The gravimetric storage capacities of hydrogen in different form [Adapted from www.slowmovingwater.com/hydrides2.htm]</td>
<td>10</td>
</tr>
<tr>
<td>Fig. 1.5</td>
<td>Mechanism of metal hydride formation</td>
<td>14</td>
</tr>
<tr>
<td>Fig. 1.6</td>
<td>A typical pressure composition isotherm showing the hydrogen absorption-desorption profile</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 1.7</td>
<td>Schematic PCT diagram at different temperature (T1<T2<T3<T4<Tc), and the van’t Hoff plot</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>The chamber of the arc furnace used during the study</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Sievert’s type hydriding setup</td>
<td>36</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>The schematic diagram of the estimation set up used during the study</td>
<td>39</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>A simplified diagram of the X-Ray diffractometer</td>
<td>40</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>Characteristic X-ray of metallic Cu</td>
<td>41</td>
</tr>
</tbody>
</table>
Fig. 2.6 Depiction of different phenomena occurring on interaction of electron beam with specimen

Fig. 2.7 Operating principle of EPMA

Fig. 2.8 Simple Mössbauer spectrum from identical source and absorber

Fig. 2.9 Quadrupole splitting for a 3/2 to 1/2 transition

Fig. 2.10 Magnetic splitting of the nuclear energy levels

Fig. 2.11 The simplified diagram of a TG apparatus

Fig. 2.12 The schematic diagram of DTA/DSC

Fig. 2.13 Schematic for the TPDRO – 1100 instrument

Fig. 3.1 The structure of (a) the monohydride (hydrogen atoms occupying the octahedral sites) and (b) the dihydride (hydrogen atoms occupying the tetrahedral sites).

Fig. 3.2 Transformation of the bcc alloy structure towards the fcc hydride structure.

Fig. 3.3 X-ray diffraction patterns for (a) Ti$_{0.9}$VFe$_{0.1}$ (b) Ti$_{0.9}$VFe$_{0.1}$H$_{3.65}$ (c) Ti$_{0.85}$VFe$_{0.15}$ and (d) Ti$_{0.85}$VFe$_{0.15}$H$_{3.83}$

Fig. 3.4 Electron micrographs for (a) Ti$_{0.9}$VFe$_{0.1}$ and (b) Ti$_{0.85}$VFe$_{0.15}$ (c) Ti$_{0.6}$VFe$_{0.2}$ and (d) Ti$_{0.6}$VFe$_{0.4}$ alloys

Fig. 3.5 (a) Ti Ka and Fe Ka X-ray line profiles (b) Electron micrographs for Ti$_{0.9}$VFe$_{0.1}$ alloys showing the relative concentrations of Fe metal in the bcc and secondary phase.

Fig. 3.6 Pressure-composition absorption curves for Ti$_{1-x}$VFe$_x$ (x = 0, 0.1, 0.15, 0.2 and 0.4) alloys at room temperature.
Fig. 3.7 Pressure-composition absorption curves for Ti$_{1-x}$VFe$_x$ ($x = 0, 0.1, 0.15, 0.2$ and 0.4) alloys at different temperatures.

Fig. 3.8 Variation of hydrogen absorption capacity with respect to the Fe content in Ti$_{1-x}$VFe$_x$ alloys ($x = 0.0, 0.1, 0.15, 0.2$ and 0.4).

Fig. 3.9 Pressure-composition diagram of Ti$_{0.85}$V$_{0.4}$Fe$_{0.15}$Cr$_{0.6}$ and Ti$_{0.8}$V$_{0.4}$Fe$_{0.2}$Cr$_{0.6}$ alloy.

Fig. 3.10 Thermal desorption profiles of (a) Ti$_{0.8}$VFe$_{0.2}$H$_{2.5}$ (b) Ti$_{0.9}$VFe$_{0.1}$H$_{3.65}$.

Fig. 3.11 Thermal desorption profiles of (a) Ti$_{0.9}$VFe$_{0.1}$H$_{3.65}$ (b) Ti$_{0.9}$VFe$_{0.1}$D$_{3.65}$.

Fig. 3.12 Thermal desorption profiles of Ti$_{0.8}$V$_{0.4}$Fe$_{0.2}$Cr$_{0.6}$H$_{1.55}$, Ti$_{0.8}$V$_{0.4}$Fe$_{0.2}$Cr$_{0.6}$D$_{1.55}$ and Ti$_{0.8}$VFe$_{0.2}$H$_{2.5}$.

Fig. 3.13 XRD patterns of Ti$_{0.85}$VFe$_{0.15}$ alloy and the hydride Ti$_{0.85}$VFe$_{0.15}$H$_{3.83}$.

Fig. 3.14 XRD patterns of Ti$_{0.85}$V$_{0.95}$Fe$_{0.15}$Zr$_{0.05}$, Ti$_{0.85}$V$_{0.95}$Fe$_{0.15}$Zr$_{0.05}$H$_2$ and Ti$_{0.85}$V$_{0.95}$Fe$_{0.15}$Zr$_{0.05}$H$_{3.74}$.

Fig. 3.15 Kinetic study of Ti$_{0.85}$VFe$_{0.15}$ and Ti$_{0.85}$V$_{0.95}$Fe$_{0.15}$Zr$_{0.05}$ alloys at room temperature and 20 atm. hydrogen pressure (Recorded after one absorption desorption cycle).

Fig. 3.16 PCT curves of Ti$_{0.85}$VFe$_{0.15}$ at room temperature and 373 K.

Fig. 3.17 PCT curves of Ti$_{0.85}$V$_{0.95}$Fe$_{0.15}$Zr$_{0.05}$ at room temperature and 373 K.

Fig. 3.18 Room temperature Mössbauer spectra of Ti$_{0.85}$VFe$_{0.15}$ and Ti$_{0.85}$VFe$_{0.15}$H$_{3.83}$.
Fig. 3.19 Room temperature Mössbauer spectra of Ti\textsubscript{0.85}V\textsubscript{0.95}Fe\textsubscript{0.15}Zr\textsubscript{0.05} and Ti\textsubscript{0.85}V\textsubscript{0.95}Fe\textsubscript{0.15}Zr\textsubscript{0.05}H\textsubscript{3.74}.

Fig. 3.20 TPD profiles of the hydrides Ti\textsubscript{0.85}VFe\textsubscript{0.15}H\textsubscript{3.83} and Ti\textsubscript{0.85}VFe\textsubscript{0.15}Zr\textsubscript{0.05}H\textsubscript{3.74}.

Fig. 3.21 X-ray diffraction patterns of Ti\textsubscript{0.85-x}Ce\textsubscript{x}VFe\textsubscript{0.15} alloys with x = 0, 0.02 and 0.05.

Fig. 3.22 X-ray diffraction patterns of 2 at. % Ce substituted alloy Ti\textsubscript{0.83}Ce\textsubscript{0.02}VFe\textsubscript{0.15} and its hydride Ti\textsubscript{0.83}Ce\textsubscript{0.02}VFe\textsubscript{0.15}H\textsubscript{4.26}.

Fig. 3.23 Electron micrographs of (a) Ti\textsubscript{0.85}VFe\textsubscript{0.15} and (b) Ti\textsubscript{0.83}Ce\textsubscript{0.02}VFe\textsubscript{0.15}, respectively.

Fig. 3.24 (a) Ce La, (b) Ti Ka and (c) V Ka X-ray line scans showing compositional variations among different phases of Ti\textsubscript{0.83}Ce\textsubscript{0.02}VFe\textsubscript{0.15} alloy.

Fig. 3.25 Kinetic study on Ti\textsubscript{0.85}VFe\textsubscript{0.15}, Ti\textsubscript{0.83}Ce\textsubscript{0.02}VFe\textsubscript{0.15} and Ti\textsubscript{0.80}Ce\textsubscript{0.05}VFe\textsubscript{0.15} alloys.

Fig. 3.26 Pressure-composition isotherms of Ti\textsubscript{0.85-x}Ce\textsubscript{x}VFe\textsubscript{0.15} (x = 0, 0.02 and 0.05) alloys at room temperature.

Fig. 3.27 Current versus time characteristics of Ti\textsubscript{0.85}VFe\textsubscript{0.15} and Ti\textsubscript{0.83}Ce\textsubscript{0.02}VFe\textsubscript{0.15} alloys.

Fig. 3.28 Measured impedance data plots of Ti\textsubscript{0.85}VFe\textsubscript{0.15} and Ti\textsubscript{0.83}Ce\textsubscript{0.02}VFe\textsubscript{0.15} alloys. Inset shows the equivalent circuit used for fitting the data. R\textsubscript{1} is the contact resistance, L\textsubscript{1} is the inductance, R\textsubscript{2}Q\textsubscript{1} represent the charge transfer resistance at the electrode electrolyte interface.
Fig. 4.1 X-ray diffraction patterns of Ti$_{1-x}$Zr$_x$VCr alloys ($x = 0.0, 0.05, 0.1$ and 1.0).

Fig. 4.2 X-ray diffraction patterns of the hydrides: (a) TiVCrH$_{5.7}$, (b) Ti$_{0.95}$Zr$_{0.05}$VCrH$_{5.6}$, (c) Ti$_{0.9}$Zr$_{0.1}$VCrH$_{4.7}$ and (d) ZrVCrH$_{4.28}$.

Fig. 4.3 P-C isotherms for Ti$_{1-x}$Zr$_x$VCr alloys ($(x = 0.0, 0.05, 0.1$ and 1.0) at room temperature.

Fig. 4.4 Kinetic study of the alloys at room temperature and 20 atm. hydrogen pressure. (Recorded after one absorption-desorption cycle).

Fig. 4.5 X-ray diffraction pattern of TiVCr hydride (prepared by dehydrogenation at 673 K followed by hydrogenation at room temperature) showing TiH$_2$ phase and the fcc TiVCrH$_{5.7}$ without TiH$_2$ phase separation.

Fig. 4.6 Temperature programmed desorption profiles of the hydrides: (a) TiVCrH$_{5.7}$, (b) Ti$_{0.95}$Zr$_{0.05}$VCrH$_{5.6}$, (c) Ti$_{0.9}$Zr$_{0.1}$VCrH$_{4.7}$ and (d) ZrVCrH$_{4.28}$.

Fig. 4.7 X-ray diffraction patterns of Ti$_2$VCr alloys and Ti$_2$VCrH$_{9.5}$.

Fig. 4.8 EDX mapping of Ti$_2$VCr alloy.

Fig. 4.9 P-C isotherms of Ti$_2$VCr alloy at 298 K and 373 K.

Fig. 4.10 Kinetic study of Ti$_2$VCr at room temperature and 20 atm hydrogen pressure. (Recorded after one absorption-desorption cycle).

Fig. 4.11 Cyclic hydrogen absorption capacity of Ti$_2$VCr alloy at room temperature up to 10th cycle.
Fig. 4.12 SEM micrographs of (a) The Ti$_2$VCr alloy (b) after initial hydrogen absorption (c) hydride after one cycle and (d) hydride after 10th cycle.

Fig. 4.13 Amount of hydrogen desorbed (wt. %) of Ti$_2$VCr at different temperature.

Fig. 4.14 TG-DTA curve of Ti$_2$VCr uncycled hydride.

Fig. 4.15 DSC graph of Ti$_2$VCr of (a) uncycled hydride and (b) multi-cycled hydride (after 10th cycle).

Fig. 5.1 Structure models of the (a) C14, (b) C36 and (c) C15 polytypic crystal structures of Laves phases. A & B atoms are represented by black & grey colours, respectively.

Fig. 5.2 (a) The C15 Laves phase structure, where the larger and smaller balls represent A and B atoms, respectively.

Fig: 5.3 The EDX mapping of ZrFe$_{2-x}$V$_x$ (x = 0.2, 0.4, 0.6, 0.8) alloys.

Fig: 5.4 The X-Ray diffraction profile of alloys. The numbers in the parenthesis represent the respective lattice planes.

Fig: 5.5 Variation of lattice volume with the V substitution. The variation in volume both for the C14 and C15 structures are shown separately.

Fig: 5.6 The X-Ray diffraction profile of the saturated hydrides of the alloys.

Fig: 5.7 The SEM pictures of the hydrides after four absorption desorption cycle (a-d). (a) ZrFe$_{1.8}$V$_{0.2}$H$_{2.52}$ (b) ZrFe$_{1.6}$V$_{0.4}$H$_{3.26}$ (c) ZrFe$_{1.4}$V$_{0.6}$H$_{3.61}$ (d) ZrFe$_{1.4}$V$_{0.8}$H$_{3.78}$ (e) The cracks formed on
ZrFe\textsubscript{1.8}V\textsubscript{0.2} surface during interaction with hydrogen.

Fig. 5.8 The pressure composition isotherm of (a) ZrFe\textsubscript{1.8}V\textsubscript{0.2} (b) ZrFe\textsubscript{1.6}V\textsubscript{0.4} (c) ZrFe\textsubscript{1.4}V\textsubscript{0.6} and (d) ZrFe\textsubscript{1.2}V\textsubscript{0.8} at 298 and 373 K.

Fig. 5.9 Van’t Hoff plots for ZrFe\textsubscript{2-x}V\textsubscript{x}.

Fig. 5.10 The variation of enthalpy of formation of ZrFe\textsubscript{2-x}V\textsubscript{x} (x = 0.2, 0.4, 0.6, 0.8).

Fig. 5.11 Temperature programmed desorption profile of the air exposed hydrides of ZrFe\textsubscript{1.8}V\textsubscript{0.2}, ZrFe\textsubscript{1.6}V\textsubscript{0.4}, ZrFe\textsubscript{1.4}V\textsubscript{0.6} and ZrFe\textsubscript{1.2}V\textsubscript{0.8} hydrides.

Fig. 6.1 The pseudo potential concept.

Fig. 6.2 Pseudo potential wave functions.

Fig. 7.1 Structures of (a) unit cell of bulk Mg, (b) unit cell of bulk β-MgH\textsubscript{2}.

Fig. 7.2 Surface calculation with five layers of surface atoms using different super cells.

Fig. 7.3 Transition metal doped Mg surface. (a) The M is doped at the top layer of the surface (b) the M doped at the second layer of the surface.

Fig. 7.4 Substitution for different M atoms when they are placed at first and second layer.

Fig. 7.5 Interaction of hydrogen with the clean Mg surface.

Fig. 7.6 Hydrogen dissociation and diffusion on the pure Mg surface as viewed from the top. (a) Initial state, (b) After dissociation of hydrogen molecule and (c) After diffusion of hydrogen atom.
Fig. 7.7 The minimum energy path for hydrogen dissociation and diffusion on the pure Mg surface. IS = Initial State, DS = After dissociation of hydrogen, FS = Final state after diffusion of hydrogen, TS1 = First transition state, TS2 = Second transition state.

Fig. 7.8 Hydrogen dissociation and diffusion (A) Ti, (B) V and (C) Ni doped Mg surface when the substituent elements remains in the top layer as viewed from the top. 1) Initial State, (2) After dissociation of hydrogen, and (3) After diffusion of hydrogen.

Fig. 7.9 NEB profiles for the dissociation and diffusion of hydrogen on the clean and doped Mg surface when M (Ti, V, and Ni) atoms are on the surface layer. The symbols “solid circle”, “solid triangle”, “hollow circle” and “hollow triangle” represent the clean, and Ti, V, and Ni doped Mg surface, respectively. The relative energies of the initial state, after dissociation of hydrogen molecule on the surface, and after diffusion of hydrogen atoms on the surface are marked by (a), (b) and (c), respectively.

Fig. 7.10 Geometry of hydrogen dissociation and diffusion on the Ti doped Mg surface when Ti is in the second layer as represented by initial State (a), after dissociation of hydrogen (b) and (c) and after diffusion of hydrogen (d).

Fig. 7.11 NEB profile for hydrogen dissociation and diffusion on the Ti doped Mg surface when Ti is in the second layer as represented by initial state (a), after dissociation of hydrogen (b) and (c) and after diffusion of hydrogen (d).

Fig. 7.12 NEB profile for hydrogen dissociation and diffusion on the V doped Mg surface when V is in the second layer as represented by initial state (a), after dissociation of hydrogen (b) and (c) and
after diffusion of hydrogen (d).

Fig. 7.13 NEB profile for hydrogen dissociation and diffusion on the Ni doped Mg surface when Ni is in the second layer as represented by initial State (a), after dissociation of hydrogen (b) and (c) and after diffusion of hydrogen (d).

Fig. 7.14 V and Ni doped at different layer of Mg(0001) surface, when V and Ni are not occupying the nearby positions. The yellow and orange balls indicate V and Ni atoms, respectively. (a), (b), (c) and (d) indicate V1Ni1, V2Ni2, V1Ni2 and V2Ni1 respectively.

Fig. 7.15 V and Ni doped at different layer of Mg(0001) surface, when V and Ni substitute two Mg atoms from the adjacent position. The gray, yellow and orange balls indicate Mg, V and Ni atoms, respectively. (a), (b), (c) and (d) indicate V1Ni1, V2Ni2, V1Ni2 and V2Ni1 respectively.

Fig. 7.16 Possible absorption sites of the hydrogen atoms after dissociation on the V and Ni doped Mg(0001) surface. The small balls indicate hydrogen atoms.

Fig. 7.17 Hydrogen dissociation and diffusion on the most stable Mg$_{58}$VNi(0001) surface as represented by initial state (a), after dissociation of hydrogen molecule (b) and after diffusion of hydrogen atoms (c1 and c2).

Fig. 7.18 Projected densities of states for H$_2$ dissociating over Ni and V doped Mg surface as a function of the energy. While figures (a), (b), and (c) represent the PDOS of H, Ni, and V before interaction (initial state), figures (d), (e), and (f) represent the PDOS of H, Ni, V after hydrogen absorption. The s and d orbitals are represented by blue and red lines, respectively.
Fig. 7.19 NEB profiles for the dissociation and diffusion of hydrogen on the Mg$_{55}$VNi surface when Ni atom is at the first layer and V atom is at the second layer. The relative energies of the initial state, after dissociation of hydrogen molecule on the surface, and after diffusion of hydrogen atoms on the surface are marked by (a), (b) and (c), respectively.

Fig. 7.20 The equilibrium structure of the Mg$_{55}$ cluster. Blue, green, red and yellow colors represent center Mg atom (Mg1), one of the 12 Mg atoms at the middle layer (Mg2), one of the 12 Mg atoms at the surface at the top of 12 vertices (Mg3), and one of the Mg atoms at the center of 30 edges of the icosahedron (Mg4), respectively.

Fig. 7.21 The spin density distribution of (a) Mg$_{55}$ and (b) TiMg$_{54}$ cluster (Ti remains at the middle layer). Dark and light colors represent higher and lower values, respectively.

Fig. 7.22 The density of state of one of the surface Mg atom for Mg$_{55}$ cluster and TiMg$_{54}$ cluster (Ti remains at the middle layer). Green and blue colors indicate the contribution from s and p orbital, respectively. The pink line indicates the Fermi level.

Fig. 7.23 (a) The images of Mg$_{55}$ though out the reaction path. The bond distance of H-H bond was indicated on each image showing the dissociation of the hydrogen molecule towards hydrogen atoms. (b) NEB profiles for the dissociation of hydrogen molecule on pure Mg$_{55}$ cluster and TiMg$_{54}$ clusters when Ti atom remains at four different positions.

Fig. 7.24 The density of state of Ti atom of TiMg$_{54}$ cluster when Ti atom remains at four different positions. The sup, ddn etc represents s
spin up, d spin down respectively.

Fig. 7.25 Molecular Dynamics Calculation at 100 K, 200 K and 300 K on HMG$_{55}$H cluster. (a) The equilibrium structure of HMG$_{55}$H and (b) variation of Mg–H(2) distance at different temperatures.

Fig. 7.26 The optimized geometries of TiMg$_n$ clusters.

Fig. 7.27 The variation of binding energy/atom with increasing number of Mg atom.

Fig. 7.28 The variation of second difference in energy with the increasing number of Mg atom.

Fig. 7.29 Interaction of hydrogen molecule with the TiMg$_8$ cluster in the perpendicular and parallel direction and the final geometry after interaction.

Fig. 7.30 NEB profile for the dissociation of hydrogen molecule on the TiMg$_8$ cluster.

Fig. 8.1 Optimized geometries of the corannulene molecule and metal-corannulene complexes.

Fig. 8.2 Comparison of binding energies and charge transfer of alkali and alkaline earth metal ions with corannulene molecule.

Fig. 8.3 Binding of hydrogen molecule with clean corannulene ring in the perpendicular orientation.

Fig. 8.4 Optimized geometry of metal ions-hydrogen complexes.

Fig. 8.5 Binding energy of hydrogen molecules with the bare metal ions.

Fig. 8.6 Charge transfer by the metal atom after interaction with hydrogen molecules.
Fig. 8.7 *Optimized geometries of the hydrogenated alkali and alkaline metal doped corannulene.*

Fig. 8.8 *Binding energy of hydrogen molecules with the metal ion-corannulene complexes.*

Fig. 8.9 *Charge on the metal atom in corannulene-metal ion complexes after interaction with hydrogen molecules.*

Fig. 8.10 *(a) The structure of SiC sheet with alternative Si (bigger atom) and C atoms (smaller atom). (b) The charge density distribution on the SiC sheet. The darker color and lighter color indicate higher charge and lesser charge respectively. Figure shows higher charge on the C atom and lower charge on the Si atom.*

Fig. 8.11 *(a) The total density of state (DOS) of the graphene like SiC sheet. (b) The DOS of the Si atoms. (c) The DOS of the C atoms. The darker and the lighter color in the DOS of Si & C atoms represent the s- and p-orbital respectively.*

Fig. 8.12 *The chair conformer of SiCH. (a) The top view and (b) the side view.*

Fig. 8.13 *The stirrup conformer of SiCH. (a) The top view and (b) the side view.*

Fig. 8.14 *The twist conformer of SiCH. (a) The top view and (b) the side view.*

Fig. 8.15 *The puckered conformer of SiCH. (a) The top view and (b) the side view.*

Fig. 8.16 *The boat conformer of SiCH. (a) The top view and (b) the side view.*
Fig. 8.17 The density of states of different conformers of fully hydrogenated SiC honeycomb structure.

Fig. 8.18 Molecular dynamics simulation showing the average relaxation of C-H, Si-H and Si-C bonds at 300 K with 5-ps time period and 1-fs time step.

Fig. 8.19 Ti doped SiC graphene like sheet. (a) Different probable positions for Ti doping. [1) on top of the Si atom, 2) on top of the C atom, 3) at the hexagonal site and 4) at the bridged position] (b) The top view of the SiC sheet after doping with Ti atom. (c) Side view of the SiC sheet after doping with Ti atom.

Fig. 8.20 (a) The total density of state (DOS) of the Ti doped SiC sheet. (b) The DOS of the Ti atoms.

Fig. 8.21 Pictorial diagram showing the interaction of hydrogen molecules one by one with Ti@SiC_sh. (a) top view (b) side view.

Fig. 8.22 SiC (10,0) zigzag nanotube. (a) Transverse view (b) Longitudinal view.

Fig. 8.23 (a) The total density of state (DOS) of SiC nanotube. (b) The DOS of the Si atoms. (c) DOS of the C atoms.

Fig. 8.24 Doping of Ti atom on the SiC nano tube.

Fig. 8.25 (a) Total density of state (DOS) of the Ti doped SiC (10,0) nanotube. (b) The DOS of the Ti atom.

Fig. 8.26 The optimized geometry of Ti doped SiC nanotube when it interacts with four hydrogen molecules.

Fig. 8.27 The projected density of state of the Ti d-orbital. (a) Ti atom is doped on the Si atom of SiC sheet. (b) Ti atom is doped in the

xxxv
hexagonal site of SiC nanotube.

Fig. 8.28 *Discovery of metallocarbohedrene by mass spectrometric study by Guo & Castleman.*

Fig. 8.29 *The geometry of Ti$_8$C$_{12}$ cluster. The red balls and the blue balls represent Ti and carbon atoms respectively.*

Fig. 8.30 *Density of state of Ti$_8$C$_{12}$ cluster.*

Fig. 8.31 *16 hydrogen molecules absorbed in Ti$_8$C$_{12}$ cluster. Each corner and side centered Ti atoms absorbs three and one hydrogen molecules respectively.*

Fig. 8.32 *Comparison of density of state between Ti$_8$C$_{12}$ and 16H$_2$@Ti$_8$C$_{12}$. For comparison purpose the Fermi energy has been set at zero.*

Fig. 8.33 *Geometry of Ti$_8$C$_{12}$ cluster after addition of hydrogen on the C sites. (a) and (b) represents the geometry of the cluster after addition of hydrogen on the C atom, and geometry of the cluster after full coverage with hydrogen respectively.*

Fig. 8.34 *Few snapshots of the hydrogenated Ti$_8$C$_{12}$ clusters during MD simulations at 0 K, 100 K, 150 K, 200 K, 300 K and 500 K.*

Fig. 8.35 *Flow sheet for hydrogen adsorption desorption in the Ti$_8$C$_{12}$ cluster.*
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Captions</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Different hydrogen production methods, where hydrogen is produced from water.</td>
<td>7</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Enthalpy of formation of hydrides in kJ/mol H₂.</td>
<td>18</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Lattice parameters and the total hydrogen storage capacities of Ti₁₋ₓVₓFeₓ alloys.</td>
<td>68</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Lattice parameters before and after hydrogenation and the maximum storage capacities of the alloys.</td>
<td>95</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Phases, lattice parameters before and after hydrogenation, and the maximum hydrogen storage capacities of the alloys.</td>
<td>107</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>EDX data of the Ti₂CrV alloy.</td>
<td>114</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>EDX data of ZrFe₂₋ₓVₓ (x = 0.2, 0.4, 0.6, 0.8) alloys.</td>
<td>129</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>The lattice parameters and hydrogen storage capacities of ZrFe₂₋ₓVₓ alloy (x = 0.2, 0.4, 0.6, 0.8).</td>
<td>132</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Mnemonics used to define density functional of various families.</td>
<td>153</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>The distortion created (in %) after doping of the substituent elements at the top layer and at the second layer. D₁₂ and D₂₃ are the distances between the first-second and second-third layer, respectively.</td>
<td>177</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Calculation of interaction energy of hydrogen and different activation barriers.</td>
<td>186</td>
</tr>
</tbody>
</table>
Table 7.3 The substitutional energies for different geometries of V-Ni composite doping on Mg(0001) surface.

Table 7.4 The average binding energies of hydrogen atom when they occupy different holes at the Mg$_{58}$VNi surface.

Table 7.5 The binding energies, substitutional energies and magnetic moments of Mg$_{55}$ cluster and Ti substituted (four different locations) Mg$_{55}$ cluster.

Table 7.6 Interaction energies of hydrogen with Mg$_{55}$ and TiMg$_{54}$ clusters. The numbers in the parenthesis corresponds to the same for periodic surface.

Table 8.1 Doping of charged alkali and alkaline metal atoms at different positions. In this table 1, 2, 3, 4 locations are Convex surface of central five member ring, Concave surface of central five member ring, Convex surface of side six member ring and Concave surface of side six member ring, respectively.

Table 8.2 Charge on Si, C and H atom of different SiC conformers.

Table 8.3 The average interaction energy/hydrogen molecule and the charge on the Ti atom, when the hydrogen molecule interacts one by one with Ti@SiC_sh.

Table 8.4 The structural parameters and energetics of Sc$_8$C$_{12}$, Ti$_8$C$_{12}$, V$_8$C$_{12}$ clusters.