REFERENCES

[20] M. Bououdina, J. L. Soubeyroux, D. Fruchart, P. De. Rango, “Structural studies of Laves phases Zr(Cr$_{1-x}$Ni$_x$)$_2$ with 0\leqx\leq0.4 and their hydrides”, *Journal of Alloys and Compounds*, 257, 82 (1997).

[21] M. Bououdina, J. L. Soubeyroux, P. De. Rango, D. Fruchart, “Phase stability and neutron diffraction studies of the laves phase compounds Zr(Cr$_{1-x}$Mo$_x$)$_2$ with 0.0\leqx\leq0.5 and their hydrides”, *International Journal of Hydrogen Energy*, 25(11), 1059 (2000).

[29] Jing Mi, Xiumei Guo, Xiaopeng Liu, Lijun Jiang, Zhinian Li, Lei Hao, and Shumao Wang, “Effect of Al on microstructures and hydrogen storage properties of Ti_{26.5}Cr_{20}(V_{0.45}Fe_{0.085})_{100-x}Al_{x}Ce_{0.5} alloy”, *Journal of Alloys and Compounds*, **485**, 324 (2009).

[57] K. Higuchi, “In situ study of hydridingdehydriding properties in some Pd/Mg thin films with different degree of Mg crystallization”, *Journal of Alloys and Compounds*, 295, 484 (1999).

[136] S. W. Cho, H. Enoki, E. Akiba, “Effect of Fe addition on hydrogen storage characteristics of Ti$_{0.16}$Zr$_{0.05}$Cr$_{0.22}$V$_{0.57}$ alloy”, *Journal of Alloys and Compounds*, **307**, 304 (2000).

[150] Sung-Wook Cho, Etsuo Akiba, Yumiko Nakamura, Hirotoshi Enoki, “Hydrogen isotope effects in Ti$_{1.0}$Mn$_{0.9}$V$_{1.1}$ and Ti$_{1.0}$Cr$_{1.5}$V$_{1.7}$ alloys”, Journal of Alloys and Compounds, 297, 253 (2000).

[174] M. Krishna Kumar, S. Ramaprabhu “Hydrogen absorption characteristics in Mm_xTb_{1-x}Co_2 (x = 0, 0.05, 0.1, 0.15, 0.2)”, International Journal of Hydrogen Energy, 32, 1890 (2007).

[186] Xu Zhang, Qian Li, Kuo-Chih Chou, “Kinetics of hydrogen absorption in the solid solution region for Laves phase Ho_{1-x}Mm_xCo_2 (x = 0, 0.2 and 0.4) alloys”, *Intermetallics, 16*, 1258 (2008).

[187] F. Ghezzi, M. De Angeli, “On the dependence of true hydrogen equilibrium pressure on the granular size distribution of the Zr(Fe_{0.5}Mn_{0.5})_2 getter alloy” *Journal of Alloys and Compounds, 330-332*, 76 (2002)

K. C. Kim, Thermodynamics of Metal Hydrides for Hydrogen Storage Applications using First Principles Calculations, A Thesis Presented to The Academic Faculty.

[277] JC-PDS Card number 35-0821.

[278] The surface energy of (unrelaxed) surface (σ\text{unreal}) was calculated according to the equation: σ\text{unreal} = \frac{1}{2}(E\text{surface} - nE\text{bulk}), where E\text{surface} is the total energy of the surface and E\text{bulk} is the total energy of the bulk. The total surface energy σ = σ\text{unreal} + E\text{real}; E\text{real} is the relaxation energy.

[281] Peter Larsson, C. Moyse´s Arau´jo, J. Andreas Larsson, Puru Jena, and Rajeev Ahuja”, Role of catalysts in dehydrogenation of MgH\textsubscript{2} nanoclusters”, *Proceedings of the National Academy of Sciences*, 105, 8227 (2008).

LIST OF INTERNATIONAL JOURNAL PUBLICATIONS INCLUDED IN THIS THESIS

(10) K. Shashikala, Asheesh Kumar, C. A. Betty, Seemita Banerjee, P. Sengupta and C. G. S. Pillai, “Improvement of the hydrogen storage properties and electrochemical characteristics of Ti$_{0.85}$VF$_{0.15}$ alloy by Ce substitution”, Journal of alloys and compounds, 509, 9079 (2011).