CONTENTS

<table>
<thead>
<tr>
<th>SYNOPSIS</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>8</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>12</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>23</td>
</tr>
</tbody>
</table>

CHAPTER-1: INTRODUCTION

1.1 ORGANIC MOLECULAR SEMICONDUCTORS 25
1.2 PHTHALOCYANINE 31
 1.2.1 Mononuclear phthalocyanine 31
 1.2.2 Binuclear phthalocyanine 36
1.3 GROWTH MODES OF MOLECULAR SEMICONDUCTOR FILMS 37
1.4 THIN FILM DEPOSITION METHODS 43
 1.4.1 Molecular beam epitaxy 44
 1.4.2 Solution method 46
1.5 OUTLINE OF THESIS 47

CHAPTER-2: EXPERIMENTAL TECHNIQUES

2.1 INTRODUCTION 51
2.2 DEPOSITION OF PHTHALOCYANINE FILMS 52
 2.2.1 Molecular beam epitaxy 52
 2.2.1.1 Configuration details of RIBER-32 EVA MBE system 54
 2.2.1.2 Deposition procedure 57
 2.2.2 Solution process 58
2.3 CHARACTERIZATION TECHNIQUES 59
 2.3.1 Atomic force microscopy (AFM) 59
 2.3.2 Scanning electron microscopy (SEM) 62
 2.3.3 X-ray photoelectron spectroscopy (XPS) 66
 2.3.4 Fourier transform infrared spectroscopy (FTIR) 67
 2.3.5 UV-Visible spectroscopy 69
 2.3.6 Raman spectroscopy 71
 2.3.7 Kelvin probe method 72
 2.3.8 X-ray diffraction (XRD)
 2.3.8.1 Powder XRD 76
 2.3.8.2 Grazing angle XRD 77
 2.3.9 X-ray reflectivity 78
2.3.10 Secondary ion mass spectroscopy (SIMS) and Matrix-assisted laser desorption/ionization (MALDI) 79

2.4 CHARGE TRANSPORT MEASUREMENT 80

2.5 CHEMIRESISTIVE GAS SENSING MEASUREMENT 82

CHAPTER-3: GROWTH MODE AND CONDUCTION CHARACTERISTICS OF MONONUCLEAR AND BINUCLEAR PHTHALOCYANINE 84

3.1 GROWTH OF MONONUCLEAR PHTHALOCYANINE FILMS 86
 3.1.1 Phthalocyanine films by MBE 86
 3.1.1.1 FePc films 86
 3.1.1.2 CoPc films 90
 3.1.1.3 F16CuPc films 95
 3.1.2 Sulfonated phthalocyanine films by solution process 96

3.2 GROWTH OF BINUCLEAR (Co-Fe)Pc PHTHALOCYANINE FILMS BY MBE 98
 3.2.1 Room temperature resistivity 98
 3.2.2 Mass spectrometry study 100
 3.2.3 Structure and morphological characterization 101
 3.2.4 X-ray photoelectron spectroscopy study 102
 3.2.5 Raman spectroscopy 104
 3.2.6 UV-visible spectroscopy 105
 3.2.7 Growth mechanism of binuclear film 106

3.3 THEORETICAL MODELS FOR CHARGE CONDUCTION 108
 3.3.1 Bulk limited conduction 108
 3.3.1.1 Ohmic conduction 109
 3.3.1.2 Space charge limited conduction (SCLC) 109
 3.3.1.3 Hopping conduction 117
 3.3.1.4 Poole-Frenkel effect 119
 3.3.2 Electrode limited conduction 122
 3.3.2.1 Tunnelling mechanism 125
 3.3.2.2 Multistep tunnelling (MUST) mechanism 126
 3.3.2.3 Schottky mechanism 128

3.4 CHARGE CONDUCTION IN MONONUCLEAR PHTHALOCYANINE FILMS 129
 3.4.1 Charge conduction in FePc films 131
 3.4.1.1 Temperature dependent J-V characteristics 131
 3.4.1.2 Temperature dependent resistivity 141
 3.4.2 Charge conduction in CoPc film 142
 3.4.2.1 CoPc films on (0001) Al2O3 substrate 143
 3.4.2.2 CoPc films on (100) SrTiO3 substrate 145
3.4.3 Charge conduction in F₁₆CuPc films
3.4.4 Charge conduction in drop cast CuPcTs films

3.5 CHARGE CONDUCTION IN BINUCLEAR (Co-Fe)Pc FILMS
 3.5.1 Temperature dependent resistivity
 3.5.2 Temperature dependent J-V characteristics
 3.5.3 Kelvin probe study
 3.5.4 Temperature dependent mobility
 3.5.5 Proposed model for high conductivity/mobility of the binuclear (Co-Fe)Pc films
 3.5.6 Role of films thickness and substrate on mobility of binuclear (Co-Fe)Pc films

3.6 CONCLUSIONS

CHAPTER-4: PHTHALOCYANINE BASED HETEROJUNCTIONS

4.1 INTRODUCTION
4.2 ORGANIC/ORGANIC INTERFACE: BAND BENDING AND INTERFACE DIPOLE
4.3 CoPc (p-type)/F₁₆CuPc (n-type) HETEROJUNCTION
 4.3.1 Structure and morphological studies
 4.3.2 Conduction characteristics
 4.3.3 Kelvin probe study
 4.3.4 Reverse rectification behaviour of F₁₆CuPc/CoPc heterojunction
4.4 CoPc (p-type)/FePc (p-type) HETEROJUNCTION
4.5 CONCLUSIONS

CHAPTER-5: GAS SENSING USING MONONUCLEAR AND BINUCLEAR PHTHALOCYANINE FILMS

5.1 INTRODUCTION
5.2 CHEMIRESISTIVE GAS SENSORS AND ITS CHARACTERISTICS PARAMETERS
5.3 Cl₂ GAS SENSING PROPERTIES OF MONONUCLEAR PHTHALOCYANINE FILMS
 5.3.1 MBE grown FePc and CoPc films
 5.3.2 Drop casted CuPcTs films
 5.3.2.1 Response curve
 5.3.2.2 Linearity and reproducibility
5.3.2.3 Selectivity 196
5.3.2.4 Explanation of reversible and irreversible response 197
5.3.2.5 Elovich isotherms for reversible response 201

5.4 Cl₂ GAS SENSING PROPERTIES OF BINUCLEAR (Co-Fe)Pc FILMS 202
5.5 CONCLUSIONS 205

CHAPTER-6: SUMMARY AND CONCLUSION 207

BIBLIOGRAPHY 212