List of Tables

2.1 Fusion barrier heights (in MeV) and positions (in fm) using the potentials Prox 77, Prox 88 and Bass 73. The corresponding experimental values are also indicated. ... 39

2.2 Percentage deviations of the theoretical values of V_B and R_B from the empirical values for the potentials Prox 77, Prox 88, Bass 73, Bass 77. 39

2.3 Fusion barrier heights (in MeV) and positions (in fm) using the potentials Bass 77, Bass 80, CW 76, BW 91 and AW 95. 40

2.4 Percentage deviations of the theoretical values of V_B and R_B from the empirical values for the potentials Bass 80, CW 76, BW 91 and AW 95. 40

2.5 Standard deviations (σ_{V_B}, σ_{V_R}) of the theoretical values against the experimental values of V_B and R_B. ... 43

2.6 Height and position of the fusion barrier for $^6Li+^{152}Sm$ after applying correction of the Coulomb potential for the deformed target. Values of V_B and R_B without correction are given in Tables 2.1 & 2.3. 45

3.1 Format of input file for CCFULL code ... 66

3.2 Fusion cross section for $^6Li+^{209}Bi$, $^9Be+^{208}Pb$ and $^7Li+^{209}Bi$. 69

3.3 Fusion cross section for $^6Li+^{152}Sm$ considering both spherical ($\beta_2=0$) and deformed ($\beta_2=0.26$) target. 70

4.1 Breakup fraction versus impact parameter at different energies for $^6Li+^{209}Bi$. ... 104
4.2 Breakup fraction versus impact parameter at different energies for 6Li+152Sm. .. 105

4.3 Breakup fraction versus impact parameter at different energies for 6Li+144Sm. .. 106

4.4 Parameters of input file of CCFULL code for 6Li+152Sm ... 109

4.5 Table showing calculations for the calculated fusion cross section (σ_{cal}) at various energies for the reaction 6Li+209Bi. The σ_{exp} values are from Ref. [7]. Units are MeV for E, millibarn for σ, and fm for b_c. ... 111

4.6 Table showing calculations for the calculated fusion cross section (σ_{cal}) at various energies for the reaction 6Li+152Sm. The σ_{exp} values are from Ref. [8]. Units are MeV for E, millibarn for σ, and fm for b_c. σ_{theo} values in the fourth column are obtained by consideration of target and projectile rotational excited states. SBPM values of σ_{theo}, needed for calculating L_c, are obtained from CCFULL code with Woods-Saxon parameters (131 MeV, 1.01 fm, 0.64 fm) [8], and are slightly less than the values in the fourth column. ... 112

4.7 Table showing calculations for the calculated fusion cross section (σ_{cal}) at various energies for the reaction 6Li+144Sm. The σ_{exp} values are from Ref. [9]. Units are MeV for E, millibarn for σ and, fm for b_c. ... 113

4.8 Cut-off angular momentum for fusion, L_c, and E_{cm} calculated from proximity potential. ... 119
5.1 Coulomb barrier heights (in MeV) and positions (in fm) for the reactions $^4,^6\text{He}+{}^{27}\text{Al}$, $^4,^6\text{He}+{}^{64}\text{Zn}$, $^4,^6\text{He}+{}^{209}\text{Bi}$ and $^{10,^8}\text{B}+{}^{58}\text{Ni}$ using the potentials Bass 80, CW 76, BW 91, AW 95, Prox 88 and Deny 02. 137

5.2 Coulomb barrier heights (in MeV) and positions (in fm) for the reactions $^7,^9,^{11}\text{Be}+{}^{27}\text{Al}$, $^7,^9,^{11}\text{Be}+{}^{64}\text{Zn}$ and $^7,^9,^{11}\text{Be}+{}^{209}\text{Bi}$ using the potentials Bass 80, CW 76, BW 91, AW 95, Prox 88 and Deny 02. 142

5.3 Values of the parameters I, M, P and the minimized χ^2-values obtained by fitting the experimental reaction cross-section data with the modified Wong's formula (MWF) for the reactions $^6\text{He} + {}^{27}\text{Al}$ and $^7\text{Be}+{}^{27}\text{Al}$. The barrier parameters are derived from the Bass 80 and AW 95 potentials. 146