CHAPTER - IV
ANALYSIS AND INTERPRETATION OF DATA
CHAPTER IV
ANALYSIS AND INTERPRETATION OF DATA

The present chapter deals with analysis and interpretation of data. The analysis of data means studying the tabulated materials in order to determine inherent facts or meanings. It involves breaking down existing complex factors into simpler parts and putting the parts together in new arrangements for the purpose of interpretation. The data were studied from as many angles as possible to explore the new facts. The data of the present study has been carefully analyzed quantitatively in the light of the objectives set forth for the investigation with the help of different statistical techniques. The interpretation of data on the other hand also calls for a careful, logical and critical examination of the results obtained after analysis, keeping in view the limitation of the sample chosen, the tools selected and used in the study. The data were analysed and interpreted in the following ways –

4.01 Measuring Academic Climate of Schools:

Objective 1 : To study the academic climate of provincialized secondary schools of Darrang district.

Hypothesis Ho1: There exists no positive academic climate in the provincialized secondary schools of Darrang district.

In order to serve the purpose of this objective the perceptions of the students with regard to academic climate of their respective schools was collected with the Academic Climate Description Questionnaire (ACDQ) and also scored adopting the procedure given in the test manual. The analysis of ACDQ was based on the four dimensions of academic climate
of schools namely, physical material, inter-personal trust, school provision, and academic provision.

The raw data obtained for each dimension have been tabulated and feed into appropriate frequency table in the light of four dimensions of ACDQ. Percentile rank was calculated with regard to each dimension separately to measure the level of academic climate of the school. The percentiles calculated in the four dimensions of ACDQ are given in Table - 4.01.

Table 4.01

Percentiles calculated in respect to Dimensions of ACDQ

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Dimensions of ACDQ</th>
<th>Total</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physical material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 90</td>
<td>27.24</td>
<td>47.67</td>
<td>34.21</td>
</tr>
<tr>
<td>P 80</td>
<td>25.69</td>
<td>45.22</td>
<td>31.69</td>
</tr>
<tr>
<td>P 75 (Q3)</td>
<td>25.12</td>
<td>44.26</td>
<td>30.54</td>
</tr>
<tr>
<td>P 70</td>
<td>24.62</td>
<td>43.56</td>
<td>29.44</td>
</tr>
<tr>
<td>P 60</td>
<td>23.62</td>
<td>41.9</td>
<td>28.02</td>
</tr>
<tr>
<td>P 50 (Mdn)</td>
<td>22.45</td>
<td>39.83</td>
<td>26.68</td>
</tr>
<tr>
<td>P 40</td>
<td>21.16</td>
<td>38.25</td>
<td>25.37</td>
</tr>
<tr>
<td>P 30</td>
<td>19.56</td>
<td>36.8</td>
<td>23.92</td>
</tr>
<tr>
<td>P 25 (Q1)</td>
<td>18.87</td>
<td>35.76</td>
<td>22.87</td>
</tr>
<tr>
<td>P 20</td>
<td>18.18</td>
<td>34.5</td>
<td>21.26</td>
</tr>
<tr>
<td>P 10</td>
<td>15.78</td>
<td>31.16</td>
<td>18.25</td>
</tr>
</tbody>
</table>

120
Fig. 4.01

Percentiles calculated in respect to Dimensions of ACDQ

A Bar diagram of percentiles calculated in respect to various
dimensions of Academic Climate of provincialized secondary schools is
presented in Fig. 4.01

In view of the percentiles calculated in respect to the different
dimensions of ACDQ (Table 4.01) the following Table 4.02 represents the
Mean and SD of all the dimensions to interpret the academic climate of
provincialized secondary schools.

Table 4.02

<table>
<thead>
<tr>
<th>Dimensions of ACDQ</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Material (P.M.)</td>
<td>22.02</td>
<td>4.58</td>
<td>Average</td>
</tr>
<tr>
<td>Inter-personal Trust (IPT)</td>
<td>19.1</td>
<td>3.62</td>
<td>Academic Climate</td>
</tr>
<tr>
<td>School Provision (SP)</td>
<td>39.9</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Academic Provision (AP)</td>
<td>26.56</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>107.58</td>
<td>20.3</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4.02 shows Mean scores of Academic Climate in different dimensions with the help of a Bar diagram.

Interpretation:

The Table 4.02 shows the Mean and SD of all the dimensions of academic climate of the schools. It also shows the calculated mean value of Physical Material (PM), Inter-personal Trust (IPT), School Provision (SP) and Academic Provision (AP) dimensions were 22.02, 19.1, 39.9 and 26.56 respectively. In all the four dimensions of the academic climate of schools indicate an average academic climate. Moreover, the total Mean score was 107.58 which falls at P_{50} (Mdn). Therefore, it can be interpreted that the provincialized secondary schools of Darrang district shows an average academic climate.

Discussion:

The academic climate scores obtained in regard to different dimensions of ACDQ revealed the need to improve the existing academic
climate of provincialized secondary schools. The physical material dimension is quite unsatisfactory which warrants immediate improvement. Many schools are lacking with a minimum facility of a playground or a library. Due to lack of physical facilities schools are not able to arrange necessary school provisions like school canteen, school health programme, school library and hostel facilities. The academic provision dimension is also not satisfactory. The co-curricular activities have remained neglected in majority of provincialized schools owing to the absence of infrastructural facilities and lack of motivation, guidance and supervision. However, the inter-personal trust dimension of academic climate is found somewhat satisfactory. The provincialized secondary schools should therefore, make adequate provisions for all physical, educational, social, cultural, economic and relational (Human relation) facilities and opportunities to constitute high academic climate. Hence in this respect the Govt. should provide adequate facilities to the provincialized secondary schools and people in general also must increase their concern by providing all possible supports to ensure a better academic climate in these schools.

4.02 Comparison of Academic Climate of Urban and Rural Schools:

Objective 2 : To compare the academic climate of Urban and Rural provincialized secondary schools.

Hypothesis Ho2 : There is no significant difference in the academic climate of Urban and Rural provincialized secondary schools.

In order to achieve this objective, the sample schools were classified as ‘Urban’ and ‘Rural’ on the basis of the location of schools to compare their academic climate. Comparison of academic climate on the basis of Urban and Rural schools is shown in Table 4.03.
Table 4.03
Comparison of Mean Academic Climate scores of
Urban and Rural Schools

<table>
<thead>
<tr>
<th>Location</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>t-value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>120</td>
<td>112.01</td>
<td>21.1</td>
<td>2.8</td>
<td>**</td>
</tr>
<tr>
<td>Rural</td>
<td>120</td>
<td>104.64</td>
<td>19.74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** - significant at 0.01 level.

Fig. 4.03
Mean Academic Climate scores of
Urban and Rural Schools

A Pie diagram representing Mean Academic Climate scores of Urban and Rural Schools is presented in Fig. 4.03.

Interpretation:

The Table 4.03 reveals that t value 2.8 is significant at 0.01 level. Therefore, the null hypothesis ‘there is no significant difference in the academic climate of Urban and Rural provincialized secondary schools’ is rejected. Hence, it indicates that there is a significant difference in the academic climate of Urban and Rural provincialized secondary schools.
Therefore, it can be concluded that academic climate of Urban schools (Mean 112.01) were found better than the academic climate of Rural schools (Mean 104.64). This finding of the study also shows some conformity with the findings of the study of Shah, M.L. (1988), while he reported that boys and girls belonging to Urban and Rural areas were differed in the perception of physical material, school provision and academic provision dimension of ACDQ.

Moreover, to know the depth of the study the researcher has taken an attempt to study the difference in different dimensions specifically, i.e. –

i) Physical Material (PM)
ii) Inter-personal Trust (IPT)
iii) School Provision (SP)
iv) Academic Provision (AP)

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Urban Schools N=120</th>
<th></th>
<th>Rural Schools N=120</th>
<th>t-value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Material (PM)</td>
<td>23.69 4.3</td>
<td></td>
<td>20.07 4.5</td>
<td>6.38</td>
<td>**</td>
</tr>
<tr>
<td>Inter-personal Trust (IPT)</td>
<td>18.24 4.98</td>
<td></td>
<td>21.8 3.86</td>
<td>6.2</td>
<td>**</td>
</tr>
<tr>
<td>School Provision (SP)</td>
<td>41.95 6.26</td>
<td></td>
<td>37.78 5.46</td>
<td>5.5</td>
<td>**</td>
</tr>
<tr>
<td>Academic Provision (AP)</td>
<td>28.13 5.56</td>
<td></td>
<td>24.99 5.92</td>
<td>4.24</td>
<td>**</td>
</tr>
</tbody>
</table>

** -significant at 0.01 level

Table 4.04 reveals the mean, SD and t-value of all the four dimensions along with its level of significance.
Fig. 4.04 shows the Bar diagram for comparison of Academic Climate of Urban and Rural schools in respect to their Dimensions

Interpretation:

The Table 4.04 shows –

Physical Material (PM): Regarding Physical Material (PM) the Table reveals that t-value 6.38 is significant at 0.01 level, which indicates a significant difference in the physical materials of Urban and Rural schools. Hence, it can be concluded that the physical materials of Urban schools (Mean 23.69) are better than that of the Rural schools (Mean 20.07). This result shows conformity with the findings of Shah, M.L. (1988).

Inter-personal Trust (IPT): Regarding Inter-personal Trust (IPT) dimension the Table reveals that t-value 6.2 is significant at 0.01 level, which indicates a significant difference between IPT dimensions of Urban and Rural schools. Hence, it can be concluded that the IPT dimensions of
Rural schools (Mean 21.80) are better than that of the Urban schools (Mean 18.24). This finding contradicts with the findings of the study conducted by Shah, M.L. (1988). Shah found a mark similarity of the responses among the students of Urban and Rural schools.

School Provision (SP): Regarding School Provision (SP) dimension the Table reveals that t-value 5.5 is significant at 0.01 level, which indicates that there is a significant difference between school provision of Urban and Rural schools. Therefore, it can be concluded that the SP dimensions of Urban schools (Mean 41.95) are better than that of the Rural schools (Mean 37.78). This finding supports the conclusion of Shah, M.L. (1988).

Academic Provision (AP): Regarding Academic Provision (AP) the Table reveals that t-value 4.24 is significant at 0.01 level, which indicates a significant difference between AP dimensions of Urban and Rural schools. Hence, it can be concluded that the AP dimensions of Urban schools (Mean 28.13) are better than their Rural counterparts (Mean 24.99). This finding also shows some similarity with the result of the study of Shah, M.L. (1988).

Discussion:

The study shows a mark difference in the academic climate of Urban and Rural provincialized secondary schools. The differences were observed in all the dimensions namely - physical material, inter-personal trust, school provisions and academic provisions. The physical materials of Urban schools including infrastructural and physical conditions of buildings, furniture's, equipments and other materials are found better than the Rural schools. In school provision dimension also Urban schools having more facilities than the Rural schools. In respect to academic provisions, Urban schools provide more academic activities than the Rural schools. However in regard to IPT dimensions Rural schools found better
than the Urban schools. The human relation aspect of Rural schools is quite satisfactory. Hence we can conclude that the physical material, school provision and academic provision dimensions of Rural schools warrant attentions and deeper insight on the part of the teachers and administrators working in these schools. They must increase their concern in those areas to ensure a highly congenial environment in the provincialized Rural secondary schools. Moreover, the IPT dimension of Urban schools need immediate improvement. The teachers, parents and administrators must give their proper attention and regard in this aspect.

4.03 Relationship between Academic Climate and Adjustment of Students:

Objective 3: To find out the relationship between the academic climate and adjustment of students in provincialized secondary schools.

Hypothesis H_03: There is no significant relationship between the academic climate and adjustment of students in provincialized secondary schools.

Unlike the ACDQ, the Adjustment Inventory for School Students (AISS) was scored adopting the procedure given in the test manual. This Adjustment Inventory for School Students seeks to study the nature of adjustment of students in the three areas: emotional, social and educational. Thus, the investigator has obtained the total raw scores from both the academic climate scores (ACDQ) and adjustment scores (AISS) of sample students and attempted to find out their relationship by employing Pearson’s product moment correlation method. Relationship between academic climate of schools and adjustment of students is shown in table 4.05.
Table 4.05
Relationship between Academic Climate and Adjustment of Students

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>df</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Climate (x)</td>
<td>240</td>
<td>238</td>
<td>.28**</td>
</tr>
<tr>
<td>Adjustment (y)</td>
<td>240</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table value of r (df = 238) = .13 at 0.05 level and .18 at 0.01 level

** - significant at 0.01 level

Interpretation:

To examine the relationship between academic climate and adjustment of the students, Pearson’s product moment correlation was employed and statistical analysis also undertaken. The co-efficient of correlation between the two variables is found to be 0.28, which is significant at 0.01 level. It can be concluded that there is a significant positive co-relation between academic climate and adjustment of students. Therefore, the null hypothesis formulated is rejected. However, the relationship seems to be low. The result indicated that high academic climate will tend to foster high adjustment of students or low adjustment problems of students.

This finding goes in tune with the conclusion of Roeser and Eccles (1998) that a positive school academic climate is associated with high adjustment of students and tends to lower rate of depression and problem behaviours. Truax and Tatum’s (1966) study also shows some conformity with the present study. Currie et al (2000) in their study concluded that in dissatisfying and unsupportive school climate, students tend to show many behavioural and emotional problems.
4.04 Adjustment and Location of Schools:

Objective 4 (a) : To study whether the schools differ significantly in students' adjustment with respect to their Location (Urban / Rural).

Hypothesis $H_0 4 (a) : There is no significant difference in students' adjustment with respect to their Location (Urban / Rural).

To serve this objective sample schools are classified into Urban and Rural on the basis of location in order to study the difference of adjustment in respect to the location of schools. Difference of students' adjustment on the basis of Urban and Rural schools are shown in Table 4.06.

Table 4.06

<table>
<thead>
<tr>
<th>Location</th>
<th>N</th>
<th>Mean</th>
<th>S D</th>
<th>t-value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>120</td>
<td>22.7</td>
<td>6.32</td>
<td>4.2</td>
<td>**</td>
</tr>
<tr>
<td>Rural</td>
<td>120</td>
<td>19.08</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** - significant at 0.01 level

Fig. 4.05

Showing Mean Adjustment scores of students in respect to their Location
Fig. 4.05 shows Mean Adjustment scores of students in respect to their location with the help of a Bar diagram

Interpretation:

The Table 4.06 reveals that t-value 4.2 is significant at 0.01 level. Therefore, the null hypothesis ‘there is no significant difference in students’ adjustment with respect to their-location’ is rejected. It indicates that there is a significant difference in the adjustment problems between the students of Urban and Rural schools. The students of Urban schools (mean 22.7) were having more adjustment problems than those of Rural schools (mean 19.08). Hence, in other words it can be concluded that students of Rural schools are better adjusted than the students of Urban schools.

The findings of the study has conformity with the findings obtained by Raju, M.V.R. and Rahamulla, T.K. (2008) while they concluded that emotional and educational adjustment of Urban students differ significantly with their Rural counterparts. Pradhan, C. (1992) also supports the similar conclusions.

4.05 Adjustment and Sex of the Students:

Objective 4 (b) : To study whether the schools differ significantly in students’ adjustment with respect to their Sex (Male / Female).

Hypothesis Ho4(b) : There is no significant difference in students’ adjustment with respect to their Sex (Male / Female).

To achieve this objective the adjustment scores of students are also further classified as ‘Males’ and ‘Females’ in order to find out the difference of adjustment in respect to the sex of the students. The Table 4.07 shows the difference of adjustment on the basis of sex of the students.
Table 4.07
Mean Adjustment scores of students in respect to their Sex

<table>
<thead>
<tr>
<th>Sex</th>
<th>N</th>
<th>Mean</th>
<th>S D</th>
<th>t-value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>120</td>
<td>22.09</td>
<td>6.56</td>
<td>1.53</td>
<td>N. S</td>
</tr>
<tr>
<td>Female</td>
<td>120</td>
<td>20.77</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N. S – Not significant

Fig. 4.06
Mean Adjustment scores of students in respect to their Sex

Fig. 4.06 shows the Bar diagram of Mean Adjustment scores of students in respect to their Sex.

Interpretation: The Table 4.07 shows that the t-value 1.53 is not significant at 0.05 level. Therefore, the null hypothesis ‘there is no significant difference in student’s adjustment with respect to their-sex’ can not be rejected. It means
there is no significant difference in the adjustment problems between the Male and Female students. In other words, the Male and Female students do not differ significantly in their adjustment. This finding is contradicted by Hynie and Saylor (1999) to report that school adjustment was significantly higher among Females than Males.

Discussion:

The study shows a positive and highly significant relationship between academic climate and adjustment of students in the provincialized secondary schools. Therefore, efforts should be made to improve the existing academic climate of schools in order to increase the level of adjustment of students. All the instructional, material, social, economic and psychological aspects of school climate should be improved so as to facilitate proper adjustment or reduce many emotional, behavioural and educational problems of the students. Many studies like Truax and Tatum (1966) found that children adjusted more positively in school, teachers and peers when teachers displayed empathy and positive regard for children. However, the difference of adjustment in Urban and Rural students was also established by this finding. This may be because of home environment and academic environment is different in Rural and Urban areas. So, Urban and Rural students face different types of adjustment problems. In fact this study shown that students of Rural schools are better adjusted than their Urban counterparts. In other words, Urban students facing more adjustment problems than the Rural students. It may be due to varied socio-economic background and complex social life of urban people. Therefore, efforts should be made to remove the adjustment problems of Urban students. The teachers, administrators and parents must increase their concern over the problems of Urban students adjustments otherwise, they may turn to mal-adaptive behaviour. In connection of sex consideration, Male and Female students do not differed in their adjustment. It may be because of both boys
and girls receive same type of home environment and academic climate in school so they are getting equal opportunities to develop their self, hence same adjustment patterns. Thus, we can come to the conclusion that a positive and responsive school academic climate tend to foster a greater attachment to school and provide the foundation for social, emotional, educational adjustment and academic achievement of students.

4.06 Relationship between Academic climate and Academic Achievement of Students :

Objective 5 : To find out the relationship between academic climate and academic achievement of students.

Hypothesis Ho3: There is no significant relationship between academic climate and academic achievement of students.

In the present study, academic achievement was obtained from school records on the basis of school Annual examination conducted by District Board. The scores obtained by sample students were collected from the school records. Further, the academic climate scores of the sample students also collected on the basis of ACDQ and the investigator examined their relationship by employing the product moment correlation method. In other words, Pearson’s product moment correlation was applied to test the relationship between academic climate and academic achievement of students. Relationship between academic climate and academic achievement of students is shown in Table 4.08.
Table 4.08

Relationship between Academic climate and Academic Achievement of Students

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>df</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic climate (x)</td>
<td>240</td>
<td>238</td>
<td>0.71 **</td>
</tr>
<tr>
<td>Academic Achievement (y)</td>
<td>240</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table value of r (df= 238) = .13 at 0.05 level and .18 at 0.01 level
** - significant at 0.01 level.

Interpretation:

To see the relationship between academic climate and academic achievement of students Pearson’s product moment correlation was used and statistical analysis also undertaken. The coefficient of correlation between the two variables was found to be 0.71, which is highly significant at 0.01 level. It can be concluded that there is a highly significant positive relationship between academic climate and the academic achievement of students. Therefore, the supporting null hypothesis is rejected. The result indicated that high scores in academic climate will be associated with high scores in academic achievement of students.

This finding goes in tune of a number of correlational studies between school academic climate and academic achievement of students. (Brand, Felner, Shim, 2003; Brookover, 1978; Freiberg, 1999; Good & Weinstein, 1986; Ma & Klinger, 2000, Prater, & Busch, 2009). The study conducted by Ladd, Birch, & Buhs, (1999) also looked at the relationship between school academic climate and academic achievement and revealed their positive relationship.
4.07 Academic Achievement and Location of schools:

Objective 6 (a): To study whether the schools differ significantly in academic achievement with respect to their Location (Urban/Rural).

Hypothesis $H_0(a)$: There is no significant difference in students' academic achievement with respect to their Location (Urban/Rural).

To serve this objective the sample schools are classified in terms of 'Urban' and 'Rural' in order to find out the difference of academic achievement of students in respect to their location. Differences of academic achievement on the basis of Urban and Rural schools are shown in the Table 4.09.

<table>
<thead>
<tr>
<th>Location</th>
<th>N</th>
<th>Mean</th>
<th>S D</th>
<th>t-value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>120</td>
<td>352.96</td>
<td>61.38</td>
<td>1.09</td>
<td>N.S</td>
</tr>
<tr>
<td>Rural</td>
<td>120</td>
<td>343.55</td>
<td>71.61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N.S. -Not significant
Fig. 4.07 shows the Bar diagram of the Mean Academic Achievement scores of students in respect to their Location.

Interpretation :

The Table 4.09 shows that the t-value 1.09 is not significant at 0.05 level. Therefore, the null hypothesis ‘there is no significant difference in students’ academic achievement with respect to their location’ is accepted. Hence, it can be concluded that academic achievement of students do not differ significantly in respect to their location, i.e. Urban and Rural. In other words, students of Urban schools do not differ significantly from Rural counterparts in their academic achievement. This finding contradicts the findings of Chutia, M. (2012) while she obtained a significant difference in the academic achievement of Urban and Rural students. However, as the mean score of students of Urban schools is higher than the
students of Rural schools hence, Haynes and Comer's (1993) study goes in tune with the present study to conclude that a positive school climate can shape the degree of academic success of Urban students.

4.08 Academic Achievement and Sex of the Students:

Objective 6 (b) : To study whether the schools differ significantly in academic achievement with respect to their Sex (Male / Female).

Hypothesis H₀₆ (b) : There is no significant difference in students’ academic achievement with respect to their Sex (Male / Female).

With this objective in view, the academic achievement scores are further classified on the basis of the sex of the students in order to find out the difference of academic achievement with respect to Male and Female students. The difference of academic climate on the basis of sex of the students is shown in the Table 4.10.

<table>
<thead>
<tr>
<th>Sex</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>t-value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>120</td>
<td>357.7</td>
<td>68.57</td>
<td>2.13</td>
<td>*</td>
</tr>
<tr>
<td>Female</td>
<td>120</td>
<td>338.2</td>
<td>73.16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*-Significant at 0.05 level.
Fig. 4.08 shows the Bar diagram of Mean Academic Achievement scores of students in respect to their Sex.

Interpretation:

The Table 4.10 reveals that t-value 2.13 is significant at 0.05 level. Therefore, the null hypothesis ‘there is no significant difference in students’ academic achievement with respect to their sex’ is rejected. It means that is a significant difference in the academic achievement of Male and Female students. The Male students are found academically better than their female counterparts. This finding of the study contradicts with the study of Motoo, M.I. (1994) to report that scholastic achievement of students shows no significant difference between boys and girls.
Discussion:

This study shows a positive and highly significant relationship between the academic climate and academic achievement of students. The result indicates that academic climate of schools should be improved in order to increase the level of achievement of the students. The various aspects of academic climate including material, social, emotional and psychological aspects need immediate improvement to increase children's learning and academic achievement. Many studies looked at the relationship between school climate and academic achievement in relation to students classroom participation. Therefore, high academic climate in the school should be ascertained to encourage students participation in academic learning and thereby to increase academic achievement. Hence efforts should also be made to increase teachers support and interaction with students to make them engaged in academic learning. Moreover, this study could not establish any significant difference in academic achievement between the students of Urban and Rural schools. This may be equal educational standard in both Urban and Rural provincialized schools. The Govt. is also making same efforts and emphasis in both the Urban and Rural schools as provincialized schools come under the same rules and standards of Govt. But still a slightly better situation was observed in case of Urban students. On the other hand, in regard to sex consideration, this study also shows a higher academic achievement of Male students than their Female counterparts. This may be due to the lack of consciousness of people to the education of Female students. As the study area is educationally and industrially backward, hence, low academic achievement of Female students may be attributed due to the uneducated parents and their lack of awareness to education of their girls. Therefore, teachers, administrators and parents must increase their support and concern to the achievement of Female students of Rural areas.