10. REFERENCES
REFERENCES


Chand SK, Yadav RS, Sharma VP. 1993. Seasonality of indoor resting mosquitoes in a 
broken forest ecosystem of north western Orissa. Journal of Malariaology, 30: 145-
154.

Chandra G. 2008. Age composition of incriminated malaria vector in a rural foothills in 

bancrofti larvae in pools of mosquitoes by the polymerase chain reaction. 
Transactions of the Royal Society of Tropical Medicine and Hygiene, 88: 665-666.

Chatterjee S, Chandra G. 2000. Role of Anopheles subpictus as primary vector of 
malaria in an area in India. Japanese Journal of Tropical Medicine and Hygiene, 28: 
177-181.

patterns of mosquitoes: random or structured?. Frontiers in Zoology, 7: 3.

Chhilar JA, Chaudhry S. 2012. Phylogenetic Analysis of Anopheles (Cellia) subpictus 
1-10.

Christophers SR. 1933. The Fauna of British India, Ceylon and Burma. V-IV London, 
Taylor and Francis, p. 1-360.

Clark AG, Shamaan NA. 1984. Evidence that DDT-dehydrochlorinase from the house 
fly is a glutathione S-transferase. Pesticide Biochemistry and Physiology, 22: 249-
261.

Collins FH, Paskewitz SM. 1996. A review of the use of ribosomal DNA (rDNA) to 

Collins RT, Narasimham MV, Dhal KB and Mukherjee BP. 1991. Gel diffusion 
analysis of Anopheles blood meals from 12 malarious study villages of Orissa State, 


Ermert V, Fink AH, Morse AP, Paeth H. 2011. The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa. Environmental Health Perspectives, 120: 77-84.


Majumdar T, Debbarna N, Roy DB. 2011. Assessment of therapeutic efficacy of chloroquine in uncomplicated *Plasmodium falciparum* malaria in a rural area of


Nanda N, Yadav RS, Subbarao SK, Hema J, Singh VP. 2000. Studies on Anopheles fluviatilis and Anopheles culicifacies sibling species in relation to malaria in


177


Sarkar M, Borkotoki A, Baruah I, Bhattacharyya IK, Srivastava RB. 2009c. Molecular analysis of knock down resistance (kdr) mutation and distribution of kdr genotypes in a wild population of *Culex quinquefasciatus* from India. Tropical Medicine and International Health, 14: 1097-1104.


Sharma SK, Chattopadhyay R, Chakrabarti K, Pati SS, Srivastava VK, Tyagi PK, Mahanty S, Mishra SK, Adak T, Das BS, Chitnis C. 2004. Epidemiology of malaria transmission and development of natural immunity in a malaria- endemic village,

Sharma SK, Tyagi PK, Padhan K, Upadhyay AK, Haque MA, Nanda N, Joshi H, Biswas S, Adak T, Das BS, Chauhan VS, Chitnis CE, Subbarao SK. 2006. Epidemiology of malaria transmission in forest and plain ecotype villages in Sundargarh District, Orissa, India. Transactions of Royal Society of Tropical Medicine and Hygiene, 100 (10): 917-925.

Sharma SK, Upadhyay AK, Haque MA, Tyagi PK, Kindo BK. 2012. Impact of changing over of insecticide from synthetic pyrethroids to DDT for indoor residual spray in a malaria endemic area of Orissa, India. Indian Journal of Medical Research, 135: 382-388


sibling species in malaria transmission in Madhya Pradesh state, India. Transactions of Royal Society of Tropical Medicine and Hygiene, 86: 613-614.


Tripathy A, Samanta L, Das S, Parida SK, Marai N, Hazra RK, Kar SK, Mahapatra N. 2010. Distribution of sibling species of Anopheles culicifacies s.l. and Anopheles fluviatilis s.l. and their vectorial capacity in eight different malaria endemic districts of Orissa, India. Memorias do Instituto Oswaldo Cruz, 105(8): 981-987.


Vulule JM, Beach RF, Atieli FK, Meallister JC, Brogdon WG, Roberts JM, Mwangi RW, Hawley WA. 1999. Elevated oxidase and esterase levels associated with permethrin tolerance in *Anopheles gambiae* from Kenyan village using permethrin-impregnated nets. Medical and Veterinary Entomology, 13: 239-244.


189


