Contents

Acknowledgement v
Preface vii

Chapter I

1. Introduction 1-34
1.1 Nanocrystalline materials 2
1.2 Synthesis of nanocrystalline material 4
1.3 Thin Films 7
1.4 Deposition of films 7
1.4.1 Brief outline of different techniques for deposition of films 7
1.4.2 Chemical Bath Deposition (CBD) technique 9
1.5 Nanocrystalline films/materials of IV-VI Semiconductors 12
1.6 A brief review of the previous works on nanocrystalline PbS 15
1.7 A brief review of the previous works of PbS (larger crystallite size) 20
1.8 Motivation of the present work 22
1.9 References 25

Chapter II

2. Experimental Details 35-60
2.1 Introduction 36
2.2 Preparation of films

2.2.1 Deposition Technique

2.2.2 Substrates for thin films

2.2.3 Substrate cleaning

2.3 Chemical bath deposition (CBD)

2.3.1 Synthesis of PbS films with larger crystallite sizes

2.3.2 Synthesis of nanocrystalline PbS with PVA as capping agent

2.3.3 Synthesis of nanocrystalline PbS with zeolite (ZSM-5) as capping agent

2.3.4 Formation of nanocrystalline PbS with various pH and various PVA concentrations

2.3.5 Time of deposition

2.3.6 Deposition of films with various molarities of the solutions

2.3.7 Deposition of films at various temperatures

2.3.8 Effect of substrates on film formation

2.4 Annealing of films

2.5 Adhesion test

2.6 Film thickness measurements

2.7 Structural analysis

2.7.1 XRD studies

2.7.2 Studies by scanning electron microscope (SEM)

2.7.3 Studies by transmission electron microscope (TEM)

2.8 Optical analysis

2.8.1 Ultraviolet-visible spectrum
Chapter III

3. Structural studies of nanocrystalline PbS 61-115
 3.1 Introduction 62
 3.2 Experimental details 64
 3.3 Theoretical consideration of X-ray diffraction technique 65
 3.4 Determination of Structural parameters 66
 3.4.1 Lattice constant 66
 3.4.2 Crystallite Size 66
 3.4.3 Average internal stress and Strain 67
 3.4.4 Determination of particle size and strain from X-ray line profile analysis 68
 3.5 Results of Structural Characterization 70
 3.5.1 X-ray diffractogram of bulk PbS sample 70
 3.5.2 Calibration of XRD instrument 71
 3.5.3 Effect of variation of PVA concentration on nature of films 71
 3.5.4 PbS films prepared with different molarities of the bath solutions 74
 3.5.5 Effect of variation of pH on nature of films 76
 3.5.6 XRD of films deposited at different solution temperatures for various deposition time for molarity 0.5M 82
3.5.7 Determination of particle size and strain from the *X-ray line profile analysis* 87

3.5.8 *XRD of annealed films deposited on glass substrates* 88

3.5.9 *XRD of films deposited on different substrates* 94

3.5.10 *XRD of PbS precipitates* 95

3.6 Morphological study of PbS films by Scanning Electron Microscope (SEM) 103

3.7 TEM analysis 108

3.8 Conclusions 110

3.9 References 112

Chapter IV

4. **Optical studies of nanocrystalline PbS** 116-155

4.1 Introduction 117

4.1.1 *Ultraviolet-visible Spectrum* 119

4.1.2 *Photoluminescence Spectrum* 121

4.2 Experimental arrangement 122

4.3 Theoretical Considerations on Optical Measurements 122

4.3.1(a) *UV-VIS spectra* 122

4.3.1(b) *Optical Absorption and Band Gap Determination* 123

4.3.2 *Increase of band gap with decrease of particle size* 125

4.3.3 *PL spectra* 127

4.4 Results and Discussion 128
Chapter V

5. **Effect of Swift Heavy Ions (SHI) Irradiation on nanocrystalline PbS**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>157</td>
</tr>
<tr>
<td>5.1.1 Material modification by SHI irradiation</td>
<td>159</td>
</tr>
<tr>
<td>5.2 Experimental</td>
<td>160</td>
</tr>
<tr>
<td>5.2.1 Sample preparation</td>
<td>160</td>
</tr>
<tr>
<td>5.2.2 Swift Heavy Ion Irradiation (SHII)</td>
<td>160</td>
</tr>
<tr>
<td>5.2.1 Characterization</td>
<td>161</td>
</tr>
<tr>
<td>5.3 Results and Discussion</td>
<td>162</td>
</tr>
<tr>
<td>5.3.1 XRD studies</td>
<td>162</td>
</tr>
<tr>
<td>5.3.2 SEM analysis</td>
<td>166</td>
</tr>
<tr>
<td>5.3.3 Optical absorption studies</td>
<td>168</td>
</tr>
<tr>
<td>5.3.4 Photoluminescence studies</td>
<td>171</td>
</tr>
<tr>
<td>5.4 Conclusions</td>
<td>175</td>
</tr>
<tr>
<td>5.5 References</td>
<td>175</td>
</tr>
</tbody>
</table>
Chapter VI

6. Comparison of properties of nanocrystalline PbS and polycrystalline PbS with larger crystallite size

6.1 Introduction

6.2 Experimental

6.2.1 Preparation of PbS film (nanocrystalline) in PVA matrix

6.2.2 Preparation of PbS film (larger crystallite size) without PVA matrix

6.3 Results and Discussion

6.3.1 Structural Analysis: XRD studies

6.3.2 Particle size and strain from W-H plots

6.4 Optical Analysis

6.4.1 UV Absorption spectra

6.4.2 Determination of band gap

6.5 Conclusions

6.6 References

Own Publications

Paper presented in Conference/Seminar