LIST OF FIGURES

Figure 2.1	Tea producing regions of India	12
Figure 2.2	Antagonism of caffeine with adenosine receptors	20
Figure 2.3	Effects of caffeine on health	22
Figure 2.4	Pathway for the biosynthesis of purine alkaloids in which adenosine derived from the SAM cycle is metabolized to xanthosine that is converted to caffeine via a route that involves three SAM-dependent methylation steps	30
Figure 2.5	Caffeine catabolic pathways	48
Figure 2.6	Schematic diagram of Swiss water decaffeination process	52
Figure 2.7	Schematic diagram showing solvent decaffeination process	54
Figure 2.8	Schematic of super critical carbon dioxide decaffeination process	55
Figure 2.9	Steps involved in gene silencing	60
Figure 2.10	Selection of two genes cs and nmt from caffeine biosynthetic pathway for preparing RNAi construct	66
Figure 2.11	Schematic diagram showing Gateway Technology based cloning of cs/nmt genes from *Camellia assamica*.	67
Figure 3.1 Flow chart of steps followed for preparing the RNAi construct of Caffeine synthase

Figure 3.2 pART27 vector map

Figure 3.3 Vector map of pWATERGATE

Figure 3.4 Flow chart of steps followed for preparing the RNAi construct of n-methyltransferase

Figure 4.1 (a) Plate showing transformed colonies of E. coli after BP reaction
(b) PCR of isolated plasmid with cs gene specific primers having att sites

Figure 4.2 Predicted ORF of cs gene using ORF Finder

Figure 4.3 Snapshot of NCBI blast results for cloned Caffeine synthase gene

Figure 4.4 (A) Restriction analysis of pDONR-cs with NsiI
(B) Amplification of pDONR-cs with gene specific primers

Figure 4.5 Agarose gel photo showing NotI digested fragment of pHELLSGATE 8-cs with Caffeine synthase gene from C. assamica cloned into pART27 binary vector.

Figure 4.6 Different stages during production of somatic embryogenesis from cotyledons of C. assamica.
Figure 4.7 Agrobacterium tumefaciens mediated transformation of tea with pART27–cs RNAi vector from embryonic stage to regenerated plantlet and multiplication stage.

Figure 4.8 Position of primers (within the T-DNA) used while checking transgene incorporation into the host genome in pART27–cs transformed plants.

Figure 4.9 Extracted genomic DNA from the regenerated leaf samples for transgene analysis.

Figure 4.10 PCR amplification of selected young leaves with nptII primers in pART27–cs transformed plants.

Figure 4.11 PCR amplicons showing introgression of hairpin cassette into selected plantlets in pART27–cs transformed plants.

Figure 4.12 Gel photo of total extracted RNA of selected transgenic lines.

Figure 4.13 qPCR expression profile for Caffeine synthase encoding transcript in control and experimental leaf samples.

Figure 4.14 Gene specific amplification of 18S and Camellia tubulin as internal control in pART27-cs transformed and control lines.

Figure 4.15 Standard curve of nptII gene resulting from the calculated Cp values were plotted vs. the log ng total DNA for copy number determination in transformed lines of pART27-cs.
Figure 4.16 Standard curve of *pal* gene resulting from the calculated Cp
values were plotted vs. the log ng total DNA for copy
number determination in transformed lines of pART27-cs

Figure 4.17 Estimation of caffeine and theobromine contents in
transformed lines of pART27-cs and control lines using
HPLC

Figure 4.18 Gel photo showing R.E. digestion of pDONR221-nmt with
NslI.

Figure 4.19 PCR Amplification of pDONR221-nmt plasmids with gene
specific primers.

Figure 4.20 Predicted ORF of *nmt* gene using ORF Finder

Figure 4.21 Snapshot of NCBI blast results for isolated *n-
methyltransferase* gene from *C. assamica*.

Figure 4.22 Gel photo showing restriction digestion of pWATERGATE-
nmt with *EcoRV*

Figure 4.23 *Agrobacterium* mediated transformation and production of
transgenic tea plants with RNAi vector pWATERGATE-
nmt

Figure 4.24 Pictorial representation showing different stages after
Agrobacterium mediated transformation of tea somatic
embryo with pWATERGATE-nmt
Figure 4.25 T-DNA showing primer sites for checking transgene incorporation into the host genome.

Figure 4.26 PCR amplification with nptII primers in pWATERGATE-nmt transformed plants

Figure 4.27 PCR amplicons showing introgression of hairpin cassette into young leaves with primer T1+T2 and T3+T4 for pWATERGATE-nmt transformed plants.

Figure 4.28 Gel photo of total extracted RNA in a selected transgenic line transformed with pWATERGATE-nmt

Figure 4.29 qPCR expression profile for n-methyl transferase encoding transcript in control and experimental plantlets

Figure 4.30 Gene specific amplification of 18S and Camellia tubulin in transformed lines of PWATERGATE-nmt

Figure 4.31 Standard curve of nptII gene resulting from the calculated Cp values were plotted vs. the log ng total DNA for copy number determination in transformed lines of pWATERGATE-nmt

Figure 4.32 Estimation of caffeine and theobromine contents in the transformed lines of pWATERGATE-nmt using HPLC