EVALUATION OF NEUROPSYCHOPHARMACOLOGICAL EFFECTS OF *Hypericum hookerianum* EXTRACTS ON SWISS ALBINO MICE

a thesis submitted by

S. SUBAKANMANI (09ZN012)

in partial fulfillment for the award of the degree of

DOCTOR OF PHILOSOPHY

under the supervision of

Dr. S. MURUGAN

DEPARTMENT OF BIOTECHNOLOGY

SCHOOL OF BIOTECHNOLOGY & HEALTH SCIENCES

KARUNYA UNIVERSITY

(Karunya Institute of Technology and Sciences)
(Declared as Deemed-to-be-University under Sec-3 of the UGC Act, 1956)
Karunya Nagar, Coimbatore - 641 114. INDIA

JUNE - 2015
DECLARATION

I, S. SUBAKANMANI hereby declare that the thesis, entitled “Evaluation of neuropsychopharmacological effects of Hypericum hookerianum extracts on Swiss Albino mice”, submitted to the Karunya University, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Biotechnology is a record of original and independent research work done by me during the period 2009-2014, under the Supervision and guidance of Dr. S. MURUGAN, Assistant Professor (SG), School of Biotechnology and Health Sciences, Karunya University. The work contained in this thesis has not been previously submitted to meet the requirement for a degree or diploma at this or any other higher education institution.

S. SUBAKANMANI
BONAFIDE CERTIFICATE

Certified that this thesis titled “Evaluation of neuropsychopharmacological effects of Hypericum hookerianum extracts on Swiss Albino mice”, is the bonafide work of S. SUBAKANMANI who carried out the research under my supervision. Certified further, that to the best of my knowledge the work reported herein does not form part of any other thesis or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other scholar.

Dr. S. Murugan
Supervisor
Assistant Professor (SG)
Department of Biotechnology
School of Biotechnology & Health Sciences
Karunya University

Dr. J. Jannet Vennila
Director & Head
Department of Biotechnology
School of Biotechnology & Health Sciences
Karunya University
ABSTRACT

According to WHO (2014), the burden of mental disorders continue to grow with significant impacts on health, society and economy. Anxiety, depressions are the major mood oriented disorders, whereas dementia and Parkinson’s disease are neurodegenerative disorders. The main cause for these disorders is oxidative stress and imbalance in antioxidants. The synthetic drugs that are currently available for treatment of these disorders exhibited undesirable side effects. Therefore to overcome this situation, search for novel pharmacotherapy from medicinal plants has progressed significantly in the past decade.

Hypericum hookerianum is a small shrub with yellow flowers and basically referred as ornamental plant. Currently, scientific community concentrates on neuroprotective effect of Hypericum species because of their richness in bioactive constituents like hypericin, hyperoside, anthroquinones, quercetin, rutin, quercitrin and etc.

In the first phase, powdered sample of aerial parts of H. hookerianum was standardized to ensure the quality of the crude drug. Ethanolic extract of H. hookerianum (EEHh) was prepared by successive soxhlation and Glycosidic Flavonoid enriched extract was prepared by acid hydrolysis method. Total flavonoidal estimation and HPTLC confirmed that GFHh have high concentration of flavonoids like quercetin and rutin than EEHh. In vitro antioxidant potential of EEHh and GFHh were evaluated and compared with standard quercetin by various free radical scavenging methods like 1,1-Diphenyl- 2-picrylhydrazyl (DPPH), 2, 2'-
azino bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) Super oxide (O$_2^-$)(SO), Nitric oxide (NO), 2,2-azo bis (2- amidino propane) di hydro chloride (AAPH) and hydroxyl radicals (OH) (HRSA). The results of *in vitro* antioxidant assays (DPPH, ABTS, SO, NO, AAPH and HRSA) showed that free radical scavenging effect of GFHh is higher in all assays when compared to EEHh which is attributed to higher concentration of flavonoids.

The anxiolytic like effect of EEHh (200 and 400 mg/kg) and GFHh (100 mg/kg) were evaluated in stress induced mice by Elevated plus maze (EPM) test, Open Field Test (OFT), Hole Board Test (HBT), Light dark exploration Test (LDE), Marble buried test (MBT) and Novelty Induced Feeding Latency (NIFL). Also the biochemical parameters were analyzed to study the *in vivo* antioxidant and neuroprotective effects of EEHh and GFHh on enzymic, non-enzymic antioxidants, lipid peroxidation and brain neurotransmitters (GABA, serotonin and dopamine). Diazepam (1 mg/kg) served as a standard anxiolytic drug. The experimental results showed that all the abnormal findings caused by stress (free radical generation) can be alleviated by EEHh and GFHh treatment.

The antidepressant like effect of EEHh (200 and 400 mg/kg) and GFHh (100 mg/kg) in reserpine (2mg/kg) induced mice were evaluated by Forced Swimming Test (FST), Tail Suspension Test (TST), Locomotor activity (LMA), RotoRod Test (RRT) and reserpine induced hypothermia. Also the biochemical parameters were analyzed to study the *in vivo* antioxidant and neuroprotective effects of EEHh and GFHh on enzymic, non- enzymic antioxidants, lipid peroxidation and brain neurotransmitters (serotonin, dopamine, adrenaline, nor-adrenaline, MAO A and B).
Imipramine (10 mg/kg) served as standard antidepressant drug. The experimental results showed that neurotoxic effects induced by reserpine can be alleviated by EEHh and GFHh.

The antiamnesic like effect of EEHh (200 and 400 mg/kg) and GFHh (100 mg/kg) in scopolamine induced mice were evaluated by Y Maze Test (YMT), Rectangular Maze Test (RMT), Novel Object Recognition test (NOR) and Pole Climbing Test (PCT). Also the biochemical parameters were analyzed to study the in vivo antioxidant and neuroprotective effects of EEHh and GFHh on enzymic, non-enzymic antioxidants, lipid peroxidation and brain neurotransmitters (acetylcholine esterase). Piracetam (100 mg/kg) served as a standard antiamnesic drug. The results showed that the memory impairment effect caused by scopolamine can be alleviated by EEHh and GFHh.

The antiparkinson like effect of EEHh (200 and 400) mg/kg and GFHh (100 mg/kg) in haloperidol induced mice were evaluated by Vacuum Chewing Movement (VCM), Tongue Protrusions (TP) and Orofacial Burst (OB), catalepsy by block and metal bar method, major parkinsonism symptoms, Beam Walk Assay, Wire Hang Test (WHT) and Gait analysis (GA). Also the biochemical parameters were analyzed to study the in vivo antioxidant and neuroprotective effects of EEHh and GFHh on enzymic, non-enzymic antioxidants, lipid peroxidation and brain neurotransmitters (GABA and glutamate), L-Dopa (30 mg/kg) served as a standard antiparkinson drug. The results showed that the motor dysfunction caused by haloperidol can be ameliorated by EEHh and GFHh.
In all the experiments, GFHh exhibited higher anxiolytic, antidepressant, antiamnesic and antiparkinson like effects. This is due to the higher concentration of flavonoids present in GFHh when compared to EEHh. Moreover, the neuroprotective effect exhibited by GFHh is comparable to the standard drugs studied in the respective experiments. Further investigations on the isolation and identification of flavonoid compounds in *H.hookerianum* may lead to chemical entities for clinical use.
ACKNOWLEDGEMENT

First, I thank my ALMIGHTY GOD, my good Father, for letting me through all the difficulties. I have experienced Your guidance day by day. You are the one who let me finish my degree. I will keep on trusting You for my future. Thank you, Lord.

I am grateful to our founders Late. Dr.D.G.S.Dhinakaran, C.A.I.I.B., Ph.D., D.D. (U.S.A), D.Litt. (Canada) and Dr. Paul Dhinakaran, M.B.A, Ph.D for their motivation, support and prayers.

I owe a great deal to Dr. S. Sundar Manoharan, the Vice Chancellor of Karunya University and Dr. C. Joseph Kennady, Registrar of Karunya University for all the facilities provided for carrying out this work.

I gratefully acknowledge the support of Dr. J. Jannet Vennila, Director and Head, Department Biotechnology, School of Biotechnology and Health Sciences, Karunya University for providing me all necessary facilities required during entire course of my research work.

I wish to express my sincere thanks to my guide Dr. S. Murugan, Assistant Professor, Department Biotechnology for his friendly support and valuable guidance for my research work. This thesis never would have been finished without the encouragement and the good working possibilities he provided.

I would also like to thank my doctoral committee members, Dr. R. T. NarendhiraKannan, Assistant Professor, Department Biotechnology, School of Biotechnology and Health Sciences, Karunya University, Coimbatore and
Dr. Ram Ram Mohan, Principal, SNMV College of Arts and Science, Coimbatore for their valuable guidance and suggestions. My Special thanks to Dr. P. Uma Devi, Former Assistant professor, Department of Biotechnology, Karunya University for her helping me in choosing the research topic.

I owe sincere thanks to Mr. Ari Hara Sivakumar, Professor, Department of Pharmacology, KMCH College of Pharmacy, Coimbatore for his excellent guidance and support in pharmacological work. I want to sincerely thank Dr. Arivukarasu, Department of Pharmacognosy, KMCH College of Pharmacy, Coimbatore for his courteous help which made the HPTLC analysis possible.

I convey my heartfelt thanks to my friends Mrs. O. S. Nimmi and Mrs. C.M. Reena Josephine for their kind support and encouragement throughout the course of my study. I am really thankful and grateful to Mr. P. M. Narayanan and Mrs. Neetu. P. John, Research Scholars, Department of Biotechnology for their support and valuable suggestions in thesis preparation.

I owe a lot to my father, who encouraged and helped me at every stage of my personal and academic life, and longed to see this achievement come true. The whole contribution for my achievements goes to my mother, my husband and my sister for their moral support and resources to finish my work. Their unwavering faith in me has been a source of constant inspiration for me. At last special thanks to my sweet daughter Honey and my son Blesston for their love and moral support.

S. SUBAKANMANI
CONTENTS

Title

DECLARATION ii

BONAFIDE CERTIFICATE iii

ABSTRACT iv

ACKNOWLEDGEMENT v

TABLE OF CONTENTS vi

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS AND ABBREVIATIONS ix

1. INTRODUCTION 1

1.1. Neuropsychopharmacology 1

1.2. Medicinal plants as novel therapeutic agents 3

1.3. Objectives of the study 4

1.4. Work design 5

2. REVIEW OF LITERATURE 6

2.1. Introduction 6

2.2. Mental Disorder-Classification 6

2.3. Anxiety 6

2.3.1. Classification of anxiety disorders 7
2.3.2. Causes of anxiety

2.3.2.1. Genetic

2.3.2.2. Social and environmental factors

2.3.2.3. Biological

2.3.2.4. Pathophysiology of anxiety

2.3.2.5. Epidemiology of anxiety disorders

2.3.3. Antianxiety agents

2.4. Depression

2.4.1. Classification and subtypes of depression

2.4.2. Causes of depression

2.4.2.1. Genetic

2.4.2.2. Biological

2.4.2.2. a. Pathophysiology of depression

2.4.2.2. b. Other facts about depression

2.4.2.3. Psychological

2.4.2.4. Social

2.4.3. Epidemiology of depression

2.4.4. Antidepressant agents

2.5. Dementia

2.5.1. Classification of Dementia

2.5.2. Causes of Dementia
2.5.3. Pathophysiology of dementia

2.5.4. Epidemiology of dementia

2.5.5. Drugs used in the treatment of dementia

2.6. Parkinson’s Disease (PD)

2.6.1. Classification of Parkinson’s Disease (PD)

2.6.2. Causes of PD

2.6.2.1. Genetic

2.6.2.2. Environmental

2.6.2.3. Pathophysiology of PD

2.6.3. Epidemiology of PD

2.7. Phytochemicals used in the treatment of neurological and neurodegenerative disorders

2.8. Phytochemicals as antioxidants in neurogeneration

2.9. Flavonoids and their neuroprotective effects

2.9.1. Flavonoids in cognitive and memory improvement

2.9.2. Effects of flavonoids on the blood brain barrier

2.9.3. Direct and Indirect antioxidant activities

2.9.4. In vivo effects of flavonoids

2.9.5. Flavonoids as GABA_A–benzodiazepine receptor

2.9.6. Flavonoids as Monoamine oxidase inhibitors

2.10. Hypericum hookerianum

2.10.1. Classification of Hypericum hookerianum
2.10.2. Medicinal uses

2.10.3. Antitumor activity

2.10.4. Antioxidant activity

2.10.5. Wound healing activity

2.10.6. Antimicrobial activity

2.10.7. CNS activity

2.10.8. Cytotoxicity

3. PHYSICOCHEMICAL STANDARDIZATION AND PHYTOCHEMICAL ANALYSIS OF Hypericum hookerianum

3.1. Objective

3.2. Importance of physicochemical standardization of medicinal plants

3.2.1. Oxidative stress and antioxidants

3.2.2. Medicinal plants as antioxidants

3.2.3. In vitro antioxidant assays

3.3. Materials and Methods

3.3.1. Collection and validation of Hypericum hookerianum

3.3.2. Organoleptic evaluation

3.3.3. Physicochemical parameters

3.3.4. Fluorescence analysis of H. hookerianum

3.3.5. Elemental analysis

3.3.6. Preparation of ethanolic extract of H.hookerianum (EEHh)-Successive Solvent Extraction
3.3.6.1. Preliminary phytochemical analysis of petroleum ether, chloroform, ethanol and aqueous extracts of *H. hookerianum*

3.3.7. Estimation of phytoconstituents by quantitative method

3.3.7.1 Estimation of carbohydrate (Anthrone’s method)

3.3.7.2 Estimation of Protein

3.3.7.3. Determination of total phenols

3.3.7.4. Determination of total flavonoids

3.3.7.5. Determination of tannins

3.3.7.6. Determination of saponins

3.3.8. Separation of Glycosidic Flavonoid enriched extract (GFHh) by acid hydrolysis method

3.3.9. Thin Layer chromatography (TLC) separation of phytochemicals (Harborne, 1973)

3.3.10. Quantification of Flavonoids in EEHh and GFHh by High Performance Thin Layer Chromatography (HPTLC)

3.3.10.1. Sample application

3.3.10.2. Development of chromatogram

3.3.10.3. Evaluation and estimation of chromatogram

3.3.10.4. UV absorption spectral analysis

3.3.10.5. IR spectral analysis

3.3.11. *In vitro* antioxidant potential of EEHh and GFHh

3.3.11.1. DPPH radical scavenging activity

3.3.11.2. ABTS radical scavenging activity
3.3.11.3. Superoxide anion scavenging activity 46
3.3.11.4. Nitric oxide scavenging activity 46
3.3.11.5. Peroxyl radical scavenging activity (AAPH assay) 47
3.3.11.6. Hydroxyl radical scavenging activity (HRSA) 47

3.4. Statistical analysis 47

3.5. Results 47

3.5.1. Determination of total flavonoid content in EEHh and GFHh 51
3.5.2. TLC analysis of EEHh and GFHh 52
3.5.3. HPTLC finger print profile of EEHh and GFHh 53
 3.5.3.1. 3D densitogram of all tracks of quercetin, rutin, EEHh and GFHh 53
 3.5.3.2. Peak display of all the tracks of quercetin, rutin, EEHh and GFHh 53
 3.5.3.3. UV absorption and Rf values of quercetin in all tracks 57
 3.5.3.4. UV absorption and Rf of rutin in all tracks 57
 3.5.3.5. Linear correlation of quercetin and rutin 58
 3.5.3.6. HPTLC finger print profile of EEHh and GFHh 59
3.5.4. UV spectrum of EEHh and GFHh 61
3.5.5. FTIR spectrum of EEHh and GFHh 61
3.5.6. In vitro antioxidant potential of EEHh and GFHh by free radical scavenging assays 62
 3.5.6.1. DPPH radical scavenging activity 62
 3.5.6.2. ABTS radical scavenging activity 63
3.5.6.3. Superoxide radical scavenging activity

3.5.6.4. Nitric oxide scavenging activity

3.5.6.5. AAPH / DCF assay

3.5.6.6. Hydroxyl radical scavenging activity

3.6. Discussion

4. ANXIOLYTIC LIKE EFFECTS OF ETHANOLIC EXTRACT OF H. hookerianum (EEHh) AND ITS GLYCOSIDIC FLAVONOID ENRICHED EXTRACT (GFHh) IN INDUCED STRESS SWISS ALBINO MICE

4.1. Objective

4.2. Introduction

4.3. Materials and Methods

4.3.1. (a) Preparation of ethanolic extract of H. hookerianum (EEHh)

4.3.1. (b) Separation of Glycosidic flavonoid enriched extract (GFHh) by acid hydrolysis method

4.3.2. Experimental animal Study

4.3.3. Experimental groups

4.3.3.1. Elevated Plus Maze test

4.3.3.2. Open Field Test

4.3.3.3. Hole Board Test

4.3.3.4. Light Dark Exploration Test

4.3.3.5. Social Interaction Test

4.3.3.6. Marble Buried Test
4.3.3.7. Novelty Induced Feeding Latency 83

4.3.4. Antioxidant assays 84

4.3.4.1. Estimation of enzymic antioxidants 84

4.3.4.2. Estimation of lipid peroxidation 84

4.3.4.3. Estimation of non-enzymic antioxidants 84

4.3.5. Estimation of brain neurotransmitters 84

4.4. Statistical Analysis 85

4.5. Results 85

4.5.1. Gross behavior analysis of Ethanolic extract of *H. hookerianum* (EEHh) in Swiss Albino mice 85

4.5.2. Effect of EEHh and GFHh on behavioral analysis 87

4.5.2.1. Effect of EEHh and GFHh on Elevated plus maze test in induced- stress mice 87

4.5.2.2. Effect of EEHh and GFHh on Open Field Test in induced- stress mice 88

4.5.2.3. Effect of EEHh and GFHh on Hole Board Test in induced- stress mice 89

4.5.2.4. Effect of EEHh and GFHh on Light Dark Exploration test in induced- stress mice 90

4.5.2.5. Effect of EEHh and GFHh on Social Interaction test in induced- stress mice 92

4.5.2.6. Effect of EEHh and GFHh on Marble Buried Test in induced- stress mice 93

4.5.2.7. Effect of EEHh and GFHh on Novelty Induced Feeding Latency in induced- stress mice 93
4.5.3. Evaluation of in vivo antioxidant potential of EEHh and GFHh in induced-stress mice hippocampus

4.5.3.1. Effect of EEHh and GFHh on enzymic antioxidants in induced-stress mice hippocampus

4.5.3.2. Effect of EEHh and GFHh on LPO in brain of induced-stress mice

4.5.3.3. Effect of EEHh and GFHh on non-enzymic antioxidants in brain of induced-stress mice

4.5.4. Effect of EEHh and GFHh on brain neurotransmitters

4.5.4.1. Effect of EEHh and GFHh on brain GABA of induced-stress mice

4.5.4.2. Effect of EEHh and GFHh on brain serotonin and dopamine of induced-stress mice

4.6. Discussion

5. ANTIDEPRESSANT LIKE EFFECTS OF ETHANOLIC EXTRACT OF Hypericum hookerianum (EEHh) AND ITS GLYCOSIDIC FLAVONOIDS ENRICHED EXTRACT (GFHh) IN RESERPINE INDUCED DEPRESSION IN SWISS ALBINO MICE

5.1. Objective

5.2. Introduction

5.3. Materials and Methods

5.3.1.(a) Preparation of plant extract

5.3.1.(b) Separation of Glycosidic Flavonoid enriched extract of H. hookerianum (GFHh) by acid hydrolysis method

5.3.2. Experimental animals

5.3.3. Experimental groups

5.3.3.1. Forced Swim Test

5.3.3.2. Tail Suspension Test
5.3.3. Locomotor Activity

5.3.3.4. Rota Rod Test

5.3.3.5. Reserpine induced Hypothermia

5.3.4. Antioxidant assays

5.3.4.1. Estimation of enzymic antioxidants

5.3.4.2. Estimation of lipid peroxidation

5.3.4.3. Estimation of non-enzymic antioxidants

5.3.5. Estimation of brain neurotransmitters

5.3.6. Estimation of MAO A and B activity

5.4. Statistical analysis

5.5. Results

5.5.1. Effect of EEHh and GFHh on behavioral analysis

5.5.1.1. Effect of EEHh and GFHh on Forced Swimming Test in reserpine- treated mice

5.5.1.2. Effect of EEHh and GFHh on Tail Suspension Test in reserpine- treated mice

5.5.1.3. Effect of EEHh and GFHh on Rota rod test in reserpine- treated mice

5.5.1.4. Effect of EEHh and GFHh on Locomotor activity in reserpine- treated mice

5.5.1.5. Effect of EEHh and GFHh on reserpine induced Hypothermia in reserpine- treated mice

5.5.2. Evaluation of in vivo antioxidant potential of EEHh and GFHh in brain of reserpine induced Swiss Albino mice

5.5.2.1. Effect of EEHh and GFHh on enzymic antioxidants in
5.5.2.2. Effect of EEHh and GFHh on non-enzymic antioxidants in brain of reserpine-treated mice

5.5.2.3. Effect of EEHh and GFHh on LPO in brain of reserpine-treated mice

5.5.3. Effect of EEHh and GFHh on brain neurotransmitters in reserpine-treated mice

5.5.3.1. Effect of EEHh and GFHh on brain dopamine and serotonin in reserpine-treated mice

5.5.3.2. Effect of EEHh and GFHh on brain adrenaline and nor-adrenaline in reserpine-treated mice

5.5.3.3. Effect of EEHh and GFHh on brain MAO A and MAO B activity in reserpine-treated mice

5.6. Discussion

6. ANTIAMNESIC LIKE EFFECTS OF ETHANOLIC EXTRACT OF H. hookerianum (EEHh) AND ITS GLYCOSIDIC FLAVONOID ENRICHED EXTRACT (GFHh) IN SCOPOLAMINE INDUCED AMNESIA IN SWISS ALBINO MICE

6.1. Objective

6.2. Introduction

6.3. Materials and Methods

6.3.1. (a) Preparation of plant extract

6.3.1. (b) Separation of Glycosidic Flavonoid enriched extract of H. hookerianum (GFHh) by acid hydrolysis method

6.3.2. Experimental animals
6.3.3. Experimental groups

6.3.3.1. Y Maze Test

6.3.3.2. Rectangular Maze Test

6.3.3.3. Pole Climbing Test

6.3.3.4. Novel Object Recognition test

6.3.4. Antioxidant assays

6.3.4.1. Estimation of enzymic antioxidants

6.3.4.2. Estimation of lipid peroxidation

6.3.4.3. Estimation of non-enzymic antioxidants

6.3.5. Estimation of brain neurotransmitters

6.3.5.1. Estimation of Acetylcholine esterase

6.4. Statistical analysis

6.5. Results

6.5.1. Effect of EEHh and GFHh on behavioral analysis

6.5.1.1. Effect of EEHh and GFHh on Y-Maze Test in scopolamine- treated mice

6.5.1.2. Effect of EEHh and GFHh on Rectangular Maze Test in scopolamine- treated mice

6.5.1.3. Effect of EEHh and GFHh on Pole Climbing Test in scopolamine- treated mice

6.5.1.4. Effect of EEHh and GFHh on Novel Object Recognition Test in scopolamine- treated mice

6.5.2. Evaluation of in vivo antioxidant potential of EEHh and GFHh
6.5.2.1. Effect of EEHh and GFHh on enzymic antioxidants in brain of scopolamine-treated mice
6.5.2.2. Effect of EEHh and GFHh on non-enzymic antioxidants in brain of scopolamine-treated mice
6.5.2.3. Effect of EEHh and GFHh on LPO antioxidants in brain of scopolamine-treated mice
6.5.3. Effect of EEHh and GFHh on brain acetylcholine esterase in scopolamine-induced Swiss Albino mice
 6.5.3.1. Effect of EEHh and GFHh on brain acetylcholine esterase in scopolamine-treated mice

6.6. Discussion

7. ANTIPARKINSON LIKE EFFECT OF ETHANOLIC EXTRACT OF Hypericum hookerianum (EEHh) AND ITS GLYCOSIDIC FLAVONOID ENRICHED EXTRACT (GFHh) IN HALOPERIDOL INDUCED PARKINSONIAN SYMPTOMS IN SWISS ALBINO MICE

7.1. Objective
7.2. Introduction
7.3. Materials and Methods
 7.3.1. (a). Preparation of plant extract
 7.3.1. (b). Separation of Glycosidic Flavonoid enriched extract of H.hookerianum (GFHh) by acid Hydrolysis method
 7.3.2. Experimental animals
 7.3.3. Experimental groups
 7.3.3.1. Vacuum Chewing Movement, Orofacial Burst and Tongue protrusions (Cousins et al., 1997)
 7.3.3.2. Catalepsy by metal bar test method (Kulkarni et al., 2006)
7.3.3.4. Ptosis (Bourin et al., 1983) 157
7.3.3.5. Staircase test (Vogal et al., 2005) 157
7.3.3.6. Beam walk test (Stanley et al., 2005) 157
7.3.3.7. Gait analysis – Forepaws stride length in walking (Tillerson et al., 2002) 158
7.3.3.8. Wire Hang test (Caston et al., 1999) 158

7.3.4. Antioxidant assays 159
7.3.4.1. Estimation of enzymic antioxidants 159
7.3.4.2. Estimation of lipid peroxidation 159
7.3.4.3. Estimation of non-enzymic antioxidants 159

7.3.5. Estimation of brain neurotransmitters 159

7.4. Statistical Analysis 159

7.5. Results 160

7.5.1. Effect of EEHh and GFHh on behavioral analysis 160
7.5.1.1. Effect of EEHh and GFHh on VCM, OB, TP in haloperidol- treated mice 160
7.5.1.2. Effect of EEHh and GFHh on major parkinsonian symptoms in haloperidol- treated mice 161
7.5.1.3. Effect of EEHh and GFHh on catalepsy model by metal bar method in haloperidol- treated mice 163
7.5.1.4. Effect of EEHh and GFHh on catalepsy model by block method in haloperidol- treated mice 164
7.5.1.5. Effect of EEHh and GFHh on ptosis test in haloperidol-treated mice
7.5.1.6. Effect of EEHh and GFHh on staircase test in haloperidol-treated mice
7.5.1.7. Effect of EEHh and GFHh on Gait Analysis in haloperidol-treated mice
7.5.1.8. Effect of EEHh and GFHh on Beam Walk Test in haloperidol-treated mice
7.5.1.9. Effect of EEHh and GFHh on Wire Hang Test in haloperidol-treated mice
7.5.2. Evaluation of in vivo antioxidant potential of EEHh and GFHh
7.5.2.1. Effect of EEHh and GFHh on enzymic antioxidants in brain of haloperidol-treated mice
7.5.2.2. Effect of EEHh and GFHh on non-enzymic antioxidants in brain of haloperidol-treated mice
7.5.3. Effect of EEHh and GFHh on brain neurotransmitters in brain of haloperidol-treated mice
7.6. Discussion

8. SUMMARY AND CONCLUSION

REFERENCES

LIST OF PUBLICATIONS

CURRICULUM VITAE
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No</th>
<th>TITLE</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification and characteristics of anxiety disorders</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Advantages and disadvantages of anxiolytics</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification and characteristics of depression</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Classification and characteristics of dementia</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Advantages and disadvantages of antiamnesic agents</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Classification and characteristics of PD</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Steps involved in HPTLC for EEHh and GFHh</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Sample application pattern in HPTLC</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>Organoleptic properties of aerial parts of H.hookerianum</td>
<td>48</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Ash values of H.hookerianum powder</td>
<td>48</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Extractive values of H.hookerianum aerial parts</td>
<td>48</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Physical properties and pH of aerial parts of H.hookerianum powder</td>
<td>49</td>
</tr>
<tr>
<td>3.5</td>
<td>Fluorescence analysis of aerial parts of H.hookerianum powder</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>Heavy metal analysis of aerial parts of H.hookerianum</td>
<td>50</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.7</td>
<td>Qualitative phytochemical analysis of extracts of H. hookerianum</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>aerial parts</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Quantitative analysis of phytoconstituents in EEHh</td>
<td>51</td>
</tr>
<tr>
<td>3.9</td>
<td>TLC profile of EEHh and GFHh with quercetin and rutin</td>
<td>52</td>
</tr>
<tr>
<td>3.10</td>
<td>The pattern of spotting in HPTLC for EEHh and GFHh</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Gross behavior analysis of experimental mice</td>
<td>86</td>
</tr>
<tr>
<td>5.1</td>
<td>Brain Monoamine Oxidase (MAO A and B) inhibitory activity of</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>EEHh and GFHh</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>TITLE</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>GABA<sub>A</sub> receptor</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Monoamine hypothesis of depression</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Acetylcholine pathway in brain</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison between neurons in normal and Parkinson’s disease</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Hypericum hookerianum</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Determination of total flavonoid content in EEHh and GFHh</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Thin layer chromatography of EEHh and GFHh in various UV lights</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>3D densitogram of all tracks of quercetin, rutin, EEHh and GFHh</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Chromatogram- Peak display of rutin and quercetin (4 µl)</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>Chromatogram- Peak display of rutin and quercetin (8 µl)</td>
<td>54</td>
</tr>
<tr>
<td>3.6</td>
<td>Chromatogram- Peak display of rutin and quercetin (12 µl)</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Chromatogram - Peak display of rutin and quercetin (16 µl)</td>
<td>54</td>
</tr>
<tr>
<td>3.8</td>
<td>Chromatogram - Peak display of rutin and quercetin (16µl)</td>
<td>55</td>
</tr>
<tr>
<td>3.9</td>
<td>Chromatogram - Peak display of GFHh (8 µl)</td>
<td>55</td>
</tr>
<tr>
<td>3.10</td>
<td>Chromatogram - Peak display of GFHh (16 µl)</td>
<td>55</td>
</tr>
<tr>
<td>3.11</td>
<td>Chromatogram - Peak display of EEHh (8 µl)</td>
<td>56</td>
</tr>
</tbody>
</table>
3.12 Chromatogram - Peak display of EEHh (16 µl) 56
3.13(a) Quercetin- UV absorption 57
3.13(b) Rutin- UV absorption 57
3.14 Linear correlation of quercetin and rutin 58
3.15 HPTLC fingerprints of quercetin, rutin, EEHh and GFHh at UV 59
254 and UV 366 nm
3.16 Structure of glycosidic flavonoids in EEHh and GFHh 60
3.17(a) UV analysis of EEHh 61
3.17(b) UV analysis of GFHh 61
3.18(a) FTIR spectrum of EEHh 61
3.18(b) FTIR spectrum of GFHh 62
3.19(a) DPPH scavenging activity of EEHh and GFHh 62
3.19(b) ABTS scavenging activity of EEHh and GFHh 63
3.19(c) Superoxide scavenging activity of EEHh and GFHh 64
3.19(d) Nitric oxide scavenging activity of EEHh and GFHh 65
3.19(e) AAPH scavenging activity of EEHh and GFHh 65
3.19(f) Hydroxyl radical scavenging activity of EEHh and GFHh 66

4.1 Stress induction 80
4.2 Elevated plus maze test 81
4.3 Open field test 81
4.4 Hole board test 82
4.5 Light Dark Exploration test
4.6 Social interaction test
4.7 Marble buried test
4.8 Effect of EEHh and GFHh on EPM (A) Time spent in open arms (B) Time spent in closed arms and (C) Number of rearings in induced -stress mice
4.9 Effect of EEHh and GFHh on OFT (A) Number of squares transverse (B) Number of rearings in induced -stress mice
4.10 Effect of EEHh and GFHh on HBT (A) Head dips latency (B) Number of head dippings in induced -stress mice
4.11 Effect of EEHh and GFHh on LDET (A) Time spent in light (B) Shuttle crossings in induced -stress mice
4.12 Effect of EEHh and GFHh on SIT in induced -stress mice
4.13 Effect of EEHh and GFHh on MBT in induced -stress mice
4.14 Effect of EEHh and GFHh on NIFL in induced -stress mice
4.15 Effect of EEHh and GFHh on enzymic antioxidants (A) Superoxide Dismutase (B) Catalase (C) Glutathione peroxidase and (D) Glutathione -S- Transferase in induced -stress mice
4.16 Effect of EEHh and GFHh on non-enzymic antioxidants (A) Lipid peroxidation (B) Reduced Glutathione (C) Vitamin C and (D) Vitamin E in induced -stress mice
4.17 Effect of EEHh and GFHh on brain neurotransmitters (A) GABA (B) Serotonin and (C) Dopamine in induced -stress mice
5.1(a) FST- Climbing of mice
5.1(b) FST- Swimming of mice

5.2 Tail suspension test

5.3 Locomotor activity

5.4 Rota rod test

5.5 Effect of EEHh and GFHh on Forced Swimming Test
 (A) Climbing (B) Swimming in reserpine-treated mice

5.6 Effect of EEHh and GFHh on Tail Suspension Test in reserpine-treated mice

5.7 Effect of EEHh and GFHh on Roto rod test (A) - % of grip strength before treatment (B) % of grip strength after treatment at different rpm in reserpine-treated mice

5.8 Effect of EEHh and GFHh on Locomotor activity in reserpine-treated mice

5.9 Effect of EEHh and GFHh on reserpine induced hypothermia

5.10 Effect of EEHh and GFHh on enzymic antioxidants
 (A) Superoxide Dismutase (B) Catalase (C) Glutathione peroxidase and (D) Glutathione -S- Transferase in brain reserpine-treated mice

5.11 Effect of EEHh and GFHh on non-enzymic antioxidants
 (A) Lipid peroxidation (B) Reduced Glutathione (C) Vitamin C and (D) Vitamin E in brain of reserpine-treated mice

5.12 Effect of EEHh and GFHh on brain neurotransmitters – (A) Dopamine (B) Serotonin (C) Epinephrine (Adrenaline) and (D) Nor-epinephrine (Nor-adrenaline)

5.13 Effect of EEHh and GFHh on brain MAO A and B activity (A) MAO A and (B) MAO B in reserpine-treated mice
6.1 Y Maze test

6.2 Rectangular Maze Test

6.3 Pole climbing test

6.4 Novel object recognition test

6.5 Effect of EEHh and GFHh on Y-maze test in scopolamine – treated mice

6.6 Effect of EEHh and GFHh on Rectangular Maze Test in scopolamine – treated mice

6.7 Effect of EEHh and GFHh on Pole Climbing Test in scopolamine – treated mice

6.8 Effect of EEHh and GFHh on Novel Object Recognition test in scopolamine – treated mice

6.9 Effect of EEHh and GFHh on enzymic antioxidants
 (A) Superoxide Dismutase (B) Catalase (C) Glutathione peroxidase and (D) Glutathione -S- Transferase in brain of scopolamine – treated mice

6.10 Effect of EEHh and GFHh on non-enzymic antioxidants-
 (A) Lipid peroxidation, (B) Reduced Glutathione, (C) Vitamin C and (D) Vitamin E in brain of scopolamine – treated mice

6.11 Effect of EEHh and GFHh on brain - Acetylcholine esterase

7.1 Mice in plexiglass beaker

7.2 Catalepsy by block method

7.3 Catalepsy by metal bar method

7.4 Ptosis
7.5 Staircase test
7.6 Beam Walk Test
7.7 Gait analysis
7.8 Wire Hang test
7.9 Effect of EEHh and GFHh on Vacuum chewing movement and Orofacial burst (A) Tongue protrusions (B) in haloperidol induced mice
7.10 Effect of EEHh and GFHh on major parkinsonian symptoms in haloperidol-treated mice
7.11 Effect of EEHh and GFHh on catalepsy (metal bar) model of haloperidol induced mice at different time intervals
7.12 Effect of EEHh and GFHh on catalepsy (block) model of haloperidol induced mice at different time intervals
7.13 Effect of EEHh and GFHh on haloperidol induced ptosis in mice
7.14 Effect of EEHh and GFHh on stair case test in haloperidol-treated mice
7.15 Effect of EEHh and GFHh on forepaw stride length in haloperidol-treated mice
7.16 Effect of EEHh and GFHh on Beam walk test in haloperidol-treated mice
7.17 Effect of EEHh and GFHh on Wire hang test in haloperidol-treated mice
7.18 Effect of EEHh and GFHh on enzymic antioxidants- (A) Superoxide dismutase (B) Catalase (C) Glutathione peroxidase and (D) Glutathione-S-transferase in brain of haloperidol-treated mice
Effect of EEHh and GFHh on non-enzymic antioxidants (A) Lipid peroxidation (B) Reduced Glutathione (C) Vitamin C and (D) Vitamin E in brain of haloperidol-treated mice

Effect of EEHh and GFHh on Brain Neurotransmitters (A) Dopamine (B) Glutamate in brain of haloperidol-treated mice
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABTS</td>
<td>2,2- Azino-bis (3-ethylbenzo-thiazoline-6- sulphonic acid)</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AAPH</td>
<td>2,2-azo bis (2- amidino propane) di hydro chloride</td>
</tr>
<tr>
<td>AChE</td>
<td>Acetyl Choline Esterase</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer’s Disease</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood Brain Barrier</td>
</tr>
<tr>
<td>BDZ</td>
<td>Benzo Diazepene</td>
</tr>
<tr>
<td>BWT</td>
<td>Beam Walk Test</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2- Diphenyl-1- picryl hydrazyl</td>
</tr>
<tr>
<td>EEHh</td>
<td>Ethanolic extract of Hypericum hookeriaum</td>
</tr>
<tr>
<td>EPM</td>
<td>Elevated Plus Maze</td>
</tr>
<tr>
<td>GFHh</td>
<td>Glycosidic flavonoid enriched extract of H. hookerianum</td>
</tr>
<tr>
<td>Fig</td>
<td>Figure</td>
</tr>
<tr>
<td>FST</td>
<td>Forced Swim Test</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma Amino Butyric Acid</td>
</tr>
<tr>
<td>GAD</td>
<td>Generalized Anxiety Disorder</td>
</tr>
<tr>
<td>Gm</td>
<td>gram</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione Peroxidase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>GSH</td>
<td>Reduced Glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione-S-Transferase</td>
</tr>
<tr>
<td>HI</td>
<td>Haloperidol Induced</td>
</tr>
<tr>
<td>HPTLC</td>
<td>High Pressure Thin Layer Chromatography</td>
</tr>
<tr>
<td>HBT</td>
<td>Hole Board Test</td>
</tr>
<tr>
<td>i.p</td>
<td>intra peritoneal</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilo gram</td>
</tr>
<tr>
<td>LMA</td>
<td>Locomotor activity</td>
</tr>
<tr>
<td>LDEET</td>
<td>Light Dark Exploration Test</td>
</tr>
<tr>
<td>LPO</td>
<td>Lipid Peroxidation</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>MDD</td>
<td>Major Depressive Disorder</td>
</tr>
<tr>
<td>mg</td>
<td>milli gram</td>
</tr>
<tr>
<td>min</td>
<td>Minute(s)</td>
</tr>
<tr>
<td>µg</td>
<td>micro gram</td>
</tr>
<tr>
<td>ml</td>
<td>milli litre</td>
</tr>
<tr>
<td>MBT</td>
<td>Marble Buried Test</td>
</tr>
<tr>
<td>MAO</td>
<td>monoamine Oxidase</td>
</tr>
<tr>
<td>µl</td>
<td>micro litre</td>
</tr>
<tr>
<td>NIFL</td>
<td>Novelty Induced Feeding Latency</td>
</tr>
<tr>
<td>Ng</td>
<td>nano gram</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide Adenine Dinucleotide</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NORT</td>
<td>Novel Object Recognition Test</td>
</tr>
<tr>
<td>Ns</td>
<td>non significant</td>
</tr>
<tr>
<td>OB</td>
<td>Orofacial Burst</td>
</tr>
<tr>
<td>OFT</td>
<td>Open Field Test</td>
</tr>
<tr>
<td>p.o</td>
<td>per oral</td>
</tr>
<tr>
<td>PCT</td>
<td>Pole Climbing Test</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s Disease</td>
</tr>
<tr>
<td>Pg</td>
<td>pico gram</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RI</td>
<td>Reserpine Induced</td>
</tr>
<tr>
<td>RMT</td>
<td>Rectangular Maze Test</td>
</tr>
<tr>
<td>RRT</td>
<td>Rotorod test</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard Error Mean</td>
</tr>
<tr>
<td>SCT</td>
<td>StairCase Test</td>
</tr>
<tr>
<td>Sec</td>
<td>Second(s)</td>
</tr>
<tr>
<td>SI</td>
<td>Stress Induced</td>
</tr>
<tr>
<td>SI</td>
<td>Scopolamine Induced</td>
</tr>
<tr>
<td>SIT</td>
<td>Social Interaction Test</td>
</tr>
<tr>
<td>SO</td>
<td>Super Oxide</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide Dismutase</td>
</tr>
<tr>
<td>TBA</td>
<td>Thio Barbituric Acid</td>
</tr>
<tr>
<td>SNRI</td>
<td>Selective Nor-Epinephrine Inhibitors</td>
</tr>
<tr>
<td>SSRI</td>
<td>Selective Serotonin Reuptake Inhibitors</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>TCA</td>
<td>Tri Cyclic Antidepressants</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thio Barbituric Acid Reactive Substances</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>TST</td>
<td>Tail Suspension Test</td>
</tr>
<tr>
<td>TP</td>
<td>Tongue Protrusions</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet spectroscopy</td>
</tr>
<tr>
<td>VCM</td>
<td>Vacuum Chewing Movement</td>
</tr>
<tr>
<td>WHT</td>
<td>Wire Hang Test</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>YMT</td>
<td>Y Maze Test</td>
</tr>
</tbody>
</table>