CHAPTER - V

SOME FIXED POINT THEOREMS IN HAUSDORFF AND SEMI-HAUSDORFF SPACES
CHAPTER - V

SOME FIXED POINT THEOREMS IN HAUSDORFF AND SEMI-HAUSDORFF SPACES

5.1. Ray [62,63], Jaggi [31], Iseki [29] and Achari [1] have discussed a number of results related to the following theorem of Edelstein [18].

Theorem 5.1.1. Let \((X,d) \) be a metric space, \(T \) be a contractive self mapping of \(X \). If for some \(x \in X \) the sequence of iterates \(\{T^n x\} \) has a convergent subsequence \(\{T^n x\} \) converging to a point \(x_0 \in X \), then
\[
 x_0 = \lim_{n \to \infty} \{T^n x\}
\]
is a unique fixed point.

These results were further generalized by Bohre and Namdeo [5], Popa [60] in Hausdorff spaces as stated in section 1.6 of Chapter I.

Chugh and Rani [9] improved the above results in the form of the following :

Theorem 5.1.2. Let \(T \) be a continuous mapping of Hausdorff space \(X \) into itself, and let \(f \) be a continuous mapping of \(X \times X \) into the non-negative reals such that
\[
 f(x,y) \neq 0 \quad \text{for all } x \neq y
\]

\[
 \alpha f(y, Ty) [1 + f(x, Tx)]
\]

\[
 f(Tx, Ty) \leq \frac{\alpha f(y, Ty) [1 + f(x, Tx)]}{1 + f(x, x)} + \beta f(x, y)
\]

for all \(x \neq y \), \(\alpha, \beta > 0 \), \(\alpha + \beta < 1 \)

\[
 \frac{1 + f(x, x)}{1 + f(x, y)}
\]

If for some \(x_0 \in X \) the sequence \(x_n = \{T^n x_0\} \) has a convergent subsequence, then \(T \) has a unique fixed point.

The aim of this section is to obtain following fixed point theorems in Hausdorff spaces by generalizing the results of above mentioned authors.

Let \(R^+ \) denotes the set of non-negative real numbers and \(N \) be the set of natural numbers. Let \(H \) denote the family of all functions \(h \) such that \(h : (R^+) \to R^+ \) and \(h \) is non-decreasing in each co-ordinate variable. Also let \(g(t) = h(t,t) \), where \(g : R^+ \to R^+ \).

Theorem 5.1.3. Let \(T \) be a continuous mapping of a Hausdorff space \(X \) into itself and let \(f \) be a continuous mapping of \(X \times X \) into \(R^+ \) such that

\[
\begin{align*}
(5.4) & \quad f(x,y) \neq 0 \text{ for all } x \neq y . \\
(5.5) & \quad \text{There is an } h \in H \text{ such that for all } x, y \in X, x \neq y \\
& \quad f(y,Ty) \leq h \left(\frac{f(x,y)}{1+f(x,y)} , f(x,y) \right)
\end{align*}
\]

where \(h \) satisfies \(h(t,t) < t \) for all \(t > 0 \)

\[
(5.6) \quad f(x,y) \geq \frac{[1+f(x,x)]}{1+f(x,y)} f(y,y), \text{ for all } x, y \in X .
\]

If for some \(x_0 \in X \), the sequence \(\{x_n\} = \{T^n x_0\} \) has a convergent subsequence, then \(T \) has a unique fixed point.

Proof. By condition (5.5), we have

\[
\begin{align*}
f(x_1,x_2) &= f(Tx_0, Tx_1) \\
&\leq h \left(\frac{f(x_1,Tx_1) [1+f(x_0,Tx_0)]}{1+f(x_0,x_1)} , f(x_0,x_1) \right) \\
&= h \left(\frac{f(x_1,Tx_1) [1+f(x_0,x_1)]}{1+f(x_0,x_1)} , f(x_0,x_1) \right)
\end{align*}
\]
= h(f(x_1, x_2), f(x_0, x_1)).

If f(x_0, x_1) < f(x_1, x_2) then f(x_1, x_2) \leq h(f(x_1, x_2), f(x_1, x_2)) < f(x_1, x_2)

a contradiction. Hence f(x_0, x_1) \geq f(x_1, x_2).

Repeating the above argument, we obtain f(x_0, x_1) \geq f(x_1, x_2) \geq f(x_2, x_3) \geq

Thus \{f(x_n, x_{n+1})\} converges with all its subsequences to some real number u being a monotonically decreasing sequence of positive real numbers. Again \{x_n\} has a convergent subsequence \{x_{n_k}\} in X which converges to some x in X. The continuity of T gives

\[T x = T(\lim x_{n_k}) = \lim T x_{n_k+1}; \quad T^2 x = T(T x) = T(x_{n_{k+1}}) = \lim x_{n_{k+2}}. \]

Now to prove that x is a fixed point of T, we have

\[f(x, Tx) = f(\lim x_{n_k}, \lim x_{n_{k+1}}) = \lim f(x_{n_k}, x_{n_{k+1}}) = u \]

\[= \lim f(x_{n_{k+1}}, x_{n_{k+2}}) = f(\lim x_{n_{k+1}}, \lim x_{n_{k+2}}) = f(T x, T^2 x) \quad(5.7) \]

If x \neq Tx, then condition (5.5) gives

\[f(T x, T^2 x)[1+f(x,T x)] \]

\[f(T x, T^2 x) \leq h \left(\frac{1+f(x,T x)}{1+f(x,T x)}, f(x,T x) \right) \]

\[= h(f(T x, T^2 x), f(x,T x)) \]

\[= h(f(T x, T^2 x), f(T x, T^2 x)) \]

\[< f(T x, T^2 x) \]

which contradicts (5.7). Thus x = Tx.

To prove the uniqueness, let y \neq x be another fixed point of T. Then from (5.5), we obtain

\[f(x, y) = f(T x, T y) \]

\[\quad f(y, T y) [1+f(x,T x)] \]

\[\leq h\left(\frac{1+f(x,y)}{1+f(x,y)}, f(x,y) \right) \]
Now condition (5.6) implies that

\[f(x,y) \leq h(f(x,y), f(x,y)) < f(x,y) \]

a contradiction. Hence \(x = y \). This completes the proof of theorem.

Corollary 5.1.1. Let \(T \) be a continuous mapping of Hausdorff space \(X \) into itself. Let \(f \) be a continuous mapping of \(X \times X \) into \(\mathbb{R}^+ \) satisfying (5.4), (5.6) and

\[
\frac{f(y,Ty) + f(x,Tx)}{1 + f(x,y)} \leq \alpha_1(x,y) f(x,y) + \alpha_2(x,y) \]

for all \(x, y \in X, x \neq y \), where the mappings \(\alpha_i : X \times X \to [0,1] \) have the property

\[
\sum_{i=1}^{2} \alpha_i(x,y) \leq 1
\]

If for some \(x_0 \in X \), the sequence \(\{x_n\} = \{T^n x_0\} \) has a convergent subsequence, then \(T \) has unique fixed point.

Remark 5.1.1. If condition 5.5 in theorem 5.1.3 is replaced by

\[
\frac{\alpha f(y,Ty) + f(x,Tx)}{1 + f(x,y)} \leq \alpha f(x,y) + \beta f(x,y)
\]

for all \(x \neq y; \alpha, \beta > 0 ; \alpha + \beta < 1 \), then also \(T \) has a unique fixed point.

We extend the above result for two mappings in the form of the following :

Theorem 5.1.4. Let \(T_1 \) and \(T_2 \) be two continuous mapping of a Hausdorff space \(X \) into itself. Let \(f \) be a continuous mapping of \(X \times X \) into \(\mathbb{R}^+ \) satisfying (5.4), (5.6) and

\[
f(x,y) = f(y,x) \quad \text{for all } x, y \in X
\]
(5.9) There is an $h \in H$ such that for all $x, y \in X$: $x \neq y$

$$f(T_1x, T_2y) \leq h \left(\frac{[1+f(x, T_1x)]f(y, T_2y)}{1+f(x, y)} \right)$$

where h satisfies $h(t, t) < t$ for all $t > 0$.

If for some $x_0 \in X$ the sequence $\{x_n\}$ where $T_1x_{2n} = x_{2n+1}$ and $T_2x_{2n+1} = x_{2n+2}$ for $n = 0, 1, 2, \ldots$ has a convergent subsequence of the type $\{x_{(2p+1)n}\}$ where $p \in \mathbb{N}$ is fixed and $n \in \mathbb{N}$, then T_1 and T_2 have a unique common fixed point.

Proof. Condition (5.9) gives

$$f(x_1, x_2) = f(T_1x_0, T_2x_1)$$

$$\leq h \left(\frac{[1+f(x_0, T_1x_0)]f(x_1, T_2x_1)}{1+f(x_0, x_1)} \right)$$

$$= h \left(\frac{[1+f(x_0, x_1)]}{f(x_1, x_2), f(x_0, x_1)} \right)$$

$$= h(f(x_1, x_2), f(x_0, x_1))$$

which implies (as in the proof of theorem 5.1.3) $f(x_0, x_1) \geq f(x_1, x_2)$ and therefore repetition of the above argument gives

$$f(x_0, x_1) \geq f(x_1, x_2) \geq f(x_2, x_3) \geq \ldots$$

and thus the sequence $\{f(x_n, x_{n+1})\}$ is a monotonically decreasing sequence of positive reals and hence converges to some real number u.

Again $\{x_n\}$ has a subsequence $\{x_{(2p+1)n}\}$ converges to some x in X.

Let $\{x_{(2p+1)2n'}\}$ be a subsequence of $\{x_{(2p+1)n}\}$. Continuity of T_1 and T_2, then gives

$$T_1x = T_1(\lim x_{(2p+1)2n'}) = \lim x_{(2p+1)2n'+1}$$

$$T_2T_1x = T_2(\lim x_{(2p+1)2n'+1}) = \lim x_{(2p+1)2n'+2}$$
We observe that
\[
\begin{align*}
 f(x,T|x) &= f(\lim_{n \to \infty} x_{(2p+1)2n'}, \lim_{n \to \infty} x_{(2p+1)2n'+1}) \\
 &= \lim_{n \to \infty} f(x_{(2p+1)2n'}, x_{(2p+1)2n'+1}) \\
 &= \lim_{n \to \infty} f(x_{(2p+1)2n'+1}, x_{(2p+1)2n'+2}) = f(T_1x, T_2T_1x).
\end{align*}
\]

If \(x \neq T_1x \), then using condition (5.9) we get
\[
 f(x,T|x) = f(T_1x, T_2T_1x) \leq h \left(\frac{1 + f(x,T|x)}{1 + f(x,T|x)} , f(x,T|x) \right) < f(x,T|x)
\]
a contradiction. Hence \(x = T_1x \).

Similarly, let \(\{x_{(2p+1)2n'+1}\} \) be a subsequence of \(\{x_{(2p+1)2n'}\} \). Then we obtain \(x = T_2x \). Hence \(x \) is a common fixed point of \(T_1 \) and \(T_2 \). Then (5.9) implies
\[
 f(x,y) = f(T_1x, T_2y) \leq h \left(\frac{1 + f(x,T|x)}{1 + f(x,T|x)} , f(x,y) \right) < f(x,y)
\]
which implies (as in the proof of theorem 5.1.2) \(f(x,y) < f(x,y) \) a contradiction. Hence \(x = y \) and this accomplishes the proof of theorem.

Corollary 5.1.2. Let \(T_1 \) and \(T_2 \) be two continuous self mappings of a Hausdorff space \(X \) and \(f \) be a continuous mapping of \(X \times X \) into \(\mathbb{R}^+ \) satisfying (5.4), (5.6), (5.8) and the following condition
\[f(T_1x, T_2y) \leq \frac{f(x, T_1x)}{1+f(x, y)} + \alpha_1(x, y) \frac{f(y, T_2y) + \alpha_2(x, y)f(x, y)}{1+f(x, y)} \]

(5.10)

for all \(x, y \in X, \ x \neq y \), where the mappings \(\alpha_i : X \times X \to [0,1] \) are such that

\[\sum_{i=1}^{2} \alpha_i(x, y) \leq 1. \]

If for some \(x_0 \in X \), the sequence \(\{x_n\} \) where \(T_1x_{2n} = x_{2n+1} \) and \(T_2x_{2n+1} = x_{2n+2} \) for \(n = 0, 1, 2, \ldots \), has a convergent subsequence of the type \(\{x_{2p+1,n}\} \), where \(p \in \mathbb{N} \) is fixed and \(n \in \mathbb{N} \), then \(T_1 \) and \(T_2 \) have a unique common fixed point.

Remark 5.1.2. If condition (5.10) is replaced by the condition

\[
\frac{\alpha f(y, T_2y)[1+f(x, T_1x)]}{1+f(x, y)} \leq f(T_1x, T_2y) + \beta f(x, y)
\]

then also \(T_1 \) and \(T_2 \) have a unique common fixed point.

The above result has been extended for sequence of mappings as under:

Theorem 5.1.5. Let \(T_1, T_2, \ldots, T_k \) be continuous mappings of a Hausdorff space \(X \) into itself and \(f \) be a continuous mapping of \(X \times X \) into \(\mathbb{R}^+ \) satisfying (5.4), (5.6), (5.8) and

(5.11)

there is an \(h \in H \) such that for all \(x, y \in X, \ x \neq y \)

\[
\frac{[1+f(x, T_i \cdot x)]}{1+f(x, y)} f(T_i x, T_{i+1} y) \leq h \left(\frac{f(x, T_i \cdot x)}{1+f(x, y)}, f(x, y) \right)
\]

where \(h \) satisfies \(h(t, t) < t \) for all \(t > 0 \) and \(T_{k+1} = T_1 \).

If for some \(x_0 \in X \), the sequence \(\{x_n\} \), where

\[
\begin{align*}
 x_1 &= T_1x_0, \ x_2 = T_2x_1, \ldots, x_k = T_kx_{k-1} \\
 x_{k+1} &= T_1x_k, \ x_{k+2} = T_2x_{k+1}, \ldots, x_{2k} = T_kx_{2k-1}
\end{align*}
\]

..
\[x_{nk+1} = T_1 x_{nk}, \quad x_{nk+2} = T_2 x_{nk+1}, \ldots x_{n(n+1)k} = T_k x_{n(n+1)k}. \]

for all \(n = 0, 1, 2, \ldots \) has a convergent subsequence of the type \(\{x_{(mk+1)n}\} \)

where \(m \in \mathbb{N} \) is fixed and \(n \in \mathbb{N} \), then \(T_1, T_2, \ldots, T_k \) have a unique common fixed point.

Proof. Condition (5.11) gives

\[
\begin{align*}
 f(x_1, x_2) &= f(T_1 x_0, T_2 x_1) \\
 &\leq h \left(\frac{1 + f(x_0, T_1 x_0)}{1 + f(x_0, x_1)} \right) f(x_1, T_2 x_1, f(x_0, x_1)) \\
 &= h(f(x_1, x_2), f(x_0, x_1))
\end{align*}
\]

which implies

\[f(x_1, x_2) \leq f(x_0, x_1). \]

Similarly, we have

\[f(x_2, x_3) \leq f(x_1, x_2) \]

\[\cdots \cdots \cdots \]

\[f(x_{k-1}, x_k) \leq f(x_{k-2}, x_{k-1}) \]

now

\[
\begin{align*}
 f(x_k, x_{k+1}) &= f(T_k x_{k-1}, T_1 x_k) \\
 &\leq h \left(\frac{1 + f(x_{k-1}, T_k x_{k-1})}{1 + f(x_{k-1}, x_k)} \right) f(x_k, T_1 x_k, f(x_{k-1}, x_k))
\end{align*}
\]

If \(f(x_k, x_{k+1}) \geq f(x_{k-1}, x_k) \), then

\[f(x_k, x_{k+1}) \leq g(f(x_k, x_{k+1}) < f(x_k, x_{k+1}) \]

a contradiction. Thus

\[f(x_k, x_{k+1}) \leq f(x_{k-1}, x_k) \]

and hence in general

\[f(x_n, x_{n+1}) \leq f(x_{n-1}, x_n), \quad n = 0, 1, 2, \ldots \]

The fact that \(T_1, T_2, \ldots, T_k \) have a unique fixed point follows as in the proof of the Theorem 5.1.4.

Corollary 5.1.3. Let \(T_1, T_2, \ldots, T_k \) be continuous mappings of a Hausdorff space \(X \) into itself and \(f \) be a continuous mapping of \(X \times X \) into \(\mathbb{R}^+ \).
satisfying (5.4), (5.6), (5.8) and
\[
\frac{[1+f(x,T;x)]}{1+f(x,y)}
\]
\[
f(T;x, T_{i+1} y) \leq \alpha_i(x,y) \frac{f(y,T_{i+1}y) + \alpha_2(x,y)f(x,y)}{1+f(x,y)}
\]
for all \(x, y \in X, x \neq y\), where the mappings \(\alpha_i : X \times X \rightarrow [0,1]\) have the property
\[
\sum_{i=1}^{2} \alpha_i(x,y) \leq 1.
\]

If for some \(x_0 \in X\), the sequence \(\{x_n\}\) as defined in theorem 5.1.5 has a convergent subsequence of the type \(\{x_{mk+1}\}\) where \(m \in \mathbb{N}\) is fixed and \(n \in \mathbb{N}\), then \(T_1, T_2, ..., T_k\) have a unique fixed point.

Remark 5.1.3. If condition (5.11) in theorem 5.1.5 is replaced by condition
\[
\frac{[1+f(x,T;x)]}{1+f(x,y)}
\]
\[
f(T;x, T_{i+1} y) \leq \alpha \frac{f(y,T_{i+1}y) + \beta f(x,y)}{1+f(x,y)}
\]
for all \(x, y \in X, x \neq y\) where \(\alpha + \beta < 1\), then also \(T_1, T_2, ..., T_k\) have a unique fixed point.

Now we present some examples to prove the validity of Theorem 5.1.3 and 5.1.4.

Example 5.1.1. Let \(X = \{0, 1/2\}\) and \(\mathcal{J}\) be the discrete topology on \(X\).
Then \((X, \mathcal{J})\) is a Hausdorff space.

Define \(T : X \rightarrow X\) such that \(T(0) = 0, T(1/2) = 0\). Then \(T\) is continuous on \(X\).
\(X \times X = \{(0,0), (0,1/2), (1/2,0), (1/2, 1/2)\}\) and
\(\mathcal{J} \times \mathcal{J} = \{\phi, (0,0), (0,1/2), (1/2,0), (1/2, 1/2)\}\)
are topology on \(X \times X\). Define \(f : X \times X \rightarrow \mathbb{R}^+\) such that
\[
f(x,y) = \frac{3x+6y}{4}
\]
for all \(x, y \in X\).
Then clearly f is continuous on $X \times X$ and $h : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$h(x, y) = \frac{(x+y)}{3} \quad \text{for all } x, y \in \mathbb{R}^+$$

(a) Here $f(x, y) \neq 0$ for all $x \neq y$, thus condition (5.4) is satisfied.

To check condition (5.5), we have the following cases:

(b) For $x = 0$, $y = 0$ condition (5.5) becomes

$$f(0,0) \leq h\left(\frac{1+f(0,0)}{1+f(0,0)}, f(0,0) \right)$$

$$\Rightarrow 0 < h(0,0) = 0$$

For $x = 1/2$, $y = 1/2$ we have

$$0 = f(0,0) \leq h\left(\frac{3/8}{1 + (3/8)}, \frac{9/8}{9/8} \right) = 31/68$$

Similarly for $x = 0$, $y = 1/2$ we have $0 = f(0,0) \leq h(0, \frac{3}{8}) = 9/28$

and for $x = 1/2$, $y = 0$, we get $0 = f(0,0) \leq h(1/2, 3/8) = 1/8$

Thus condition (5.5) holds.

To check condition (5.6), we have the following cases:

(c) For $x = 0$, $y = 1/2$ we have

$$f(0, 1/2) \geq \frac{1+f(0,0)}{1+f(0,1/2)} f(1/2, 1/2)$$

$$\Rightarrow \frac{3}{4} > \frac{9}{14} \quad \text{which is true.}$$

Similarly for $x = 1/2$, $y = 0$, condition (5.6) becomes

$$3/8 = f(1/2, 0) \geq \frac{1+f(1/2, 1/2)f(0,0)}{(1+f(1/2, 0))} = 0$$

For $x = 0$, $y = 0$ we have $0 = f(0,0) \geq f(0,0)$

and for $x = 1/2$, $y = 1/2$, $f(1/2, 1/2) \geq f(1/2, 1/2)$
open sets G and H in \mathcal{J} are not disjoint. But clearly every convergent sequence in (X, \mathcal{J}) has a unique limit. Therefore (X, \mathcal{J}) is a semi-Hausdorff space but not Hausdorff. Space (X, \mathcal{J}) is clearly T_1 since $\{x\}'$ and $\{y\}' \in \mathcal{J}$.

Orbitally Continuous. In a semi-Hausdorff space X, a self-mapping T is said to be orbitally continuous if for each $x \in X, T(x) \to u \Rightarrow T(T(x)) \to Tu$

In this section, we prove the following fixed point theorems in semi-Hausdorff spaces with a weaker condition of continuity, which extends the results of Hicks-Rhoades [27], Jungck [34] and Sehgal [77] in the new setting.

Theorem 5.2.1. Let S and T be two orbitally continuous self maps of a space X. Let f be continuous maps of $X \times X \to R^+$ (set of non-negative reals) such that

(5.12) $f(x, y) = 0$ if and only if $x = y$

(5.13) There exists a function $\Phi: R^+ \to R^+$ such that Φ is non-decreasing and $\Phi(y) < y$, $\Phi(0) = 0$ for each $y > 0$

(5.14) for all $x, y \in X$

$f(Tx, Ty) \leq \Phi(m(x, y))$

where $m(x, y) = \max \{f(Sx, Sy), f(Sx, Tx), f(Sy, Ty), f(Tx, Sy)\}$

(5.15) $T(X) \subseteq S(X)$ and if for some $x_0 \in X$. The sequence $\{x_n\} = \{T^n x_0\}$ has a convergent subsequence, then S and T have a unique common fixed point.

Proof. Since $T(X) \subseteq S(X)$ so for every $x_0 \in X, Tx_0 \in X$ and so there exists $x_1 \in X$ such that $Tx_0 = Sx_1$ and in general we can have x_n’s such that $Tx_n = Sx_{n+1}$ for $n = 0, 1, 2, \ldots$

Also from $x_n = T^n x_0$ we have $Tx_n = x_{n+1}$
Hence $T_{n} = S_{n+1} = x_{n+1}$ for $n = 0, 1, 2, \ldots$.

Now using (5.14) we have

$$f(x_1, x_2) = f(T_{0}, T_{1}) \leq \Phi(m(x_0, x_1))$$

where $m(x_0, x_1) = \max \{f(S_{x_0}, S_{x_1}), f(S_{x_0}, T_{x_1}), f(S_{x_1}, T_{x_1}), f(T_{x_0}, S_{x_1})\}$

$$= \max \{f(x_0, x_1), f(x_1, x_2), 0\}$$

Now if $m(x_0, x_1) = f(x_1, x_2)$, then

$$f(x_1, x_2) \leq \Phi(f(x_1, x_2)) < f(x_1, x_2),$$

gives a contradiction. Also if $m(x_0, x_1) = 0$, then $f(x_1, x_2) \leq \Phi(0) \Rightarrow x_1 = x_2$

which is not the case. Hence $m(x_0, x_1) = f(x_1, x_2)$ which implies that

$$f(x_1, x_2) \leq \Phi(f(x_0, x_1)) < f(x_0, x_1).$$

Repeating the above arguments, we have

$$f(x_0, x_1) > f(x_1, x_2) > f(x_2, x_3) > \ldots$$

Thus the sequence $\{f(x_n, x_{n+1})\}$ converges to some u, being the monotone sequence of positive reals. Again $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ converging to some p (say).

Then from orbital continuity of S and T, we have

$$T_{p} = T \lim_{k} x_{n} = \lim_{k} T x_{n} = \lim_{k} x_{n+1}$$

$$S T_{p} = S \lim_{k} x_{n+1} = \lim_{k} S x_{n+1} = \lim_{k} x_{n+1} = T_{p}$$

$$T^{2} p = T \lim_{k} x_{n+1} = \lim_{k} T x_{n+1} = \lim_{k} x_{n+2}$$

Now $f(p, T_{p}) = f(\lim_{k} x_{n}, \lim_{k} x_{n+1}) = \lim_{k} f(x_{n}, x_{n+1})$

$$= u$$

$$= \lim_{k} f(x_{n+1}, x_{n+2})$$

$$= f(T_{p}, T^{2} p).$$
Also \(Sx_{n+1} = x_{n+1} \) gives \(\lim Sx_n = \lim x_{n_k} \); \(S \lim x_n = p \)

\[\text{Or } Sp = p. \]

Now if \(p \neq Tp \), then using \(Sp = p \), we get

\[f(Tp, T^2p) \leq \Phi(m(p, Tp)) \]

where \(m(p, Tp) = \max \{ f(Sp, STp), f(Sp, Tp), f(STp, TSp), f(Tp, STp) \} \).

\[= \max \{ f(p, Tp), f(p, Tp), f(Tp, Tp), f(Tp, Tp) \}, \]

which implies that \(m(p, Tp) = f(p, Tp) \)

Then \(f(Tp, T^2p) < \Phi(f(p, Tp)) < f(p, Tp) \) gives a contradiction.

Hence we must have \(p = Tp = Sp \)

uniqueness of common fixed point \(p \) follows from condition (5.14).

We give the following example to prove the validity of our Theorem 5.2.1.

Example 5.2.2. If we take \(X = [0, 4] \) with co-countable topology then

\((X, \mathcal{S})\) is a Semi-Hausdorff space. Let us define

\[T(x) = \frac{x}{2} + 1 \text{ and } S(x) = 4 - x \text{ for all } x, y \in X \]

\[f(x, y) = |x - y| \text{ for all } x, y \in [0, 4]; \quad \Phi(y) = \frac{3}{4}y \text{ for all } y \in \mathbb{R}^+, \]

then clearly

\[T(X) = [1, 3] \subseteq S(X) = [0, 4] \]

To verify condition (5.14), we have

\[f(Tx, Ty) = |\frac{x}{2} + 1 - \frac{y}{2} - 1| = |x - y|/2 \]

\[m(x, y) = \max \{ |4x - 4 + y|, |4x - (x/2) - 1|, |4 - y - (y/2) - 1|, |x/2 + 1 - 4 + y| \} \]

\[= \max \{ |x - y|, |3 - (3x/2)|, |3 - (3y/2)|, |x/2 + (y - 3)| \}. \]

Clearly \(|x - y|/2 \leq \Phi(|x - y|) < 3/4 |x - y| \) is true for all \(x, y \in [0, 4] \).

Also for \(x_0 = 0; \quad x_1 = Tx_0 = 1; \quad x_2 = Tx_1 = 3/2 \).

Similarly, \(x_3 = 7/4; \quad x_4 = 15/8; \quad x_5 = 31/16 \) and so on.

Hence the sequence \(\{x_n\} \) is a sequence of positive terms and hence converges to 2. Thus all the conditions of Theorem 5.2.1 are satisfied and clearly \(x = 2 \) is the unique common fixed point of \(S \) and \(T \).
Remarks. Theorem 5.2.1 is general and it has many Corollaries.

(1) If we take $S = \text{Identity mapping}$

\[f(x,y) = d(x,y) ; \quad \Phi(s) = ks, \quad 0 \leq k < 1 \quad \text{and} \]

\[m(x,y) = \max \{d(x,y), d(x, Tx), d(y, Ty)\} \]

for $x, y \in X, x \neq y$ we obtain the result of Sehgal [77] in metric spaces.

(2) Also letting $T = h$ and $S = f$:

\[f(x,y) = d(x,y) \quad \text{and} \]

\[m(x,y) = \max \{d(fx, fy), d(fx, hx), d(fy, hy)\} \]

we get Theorem 5 of Hicks and Rhoades [27] for d-complete topological spaces in this new setting.

(3) Similarly theorem 5.2.1 is a direct generalisation of the results of Rakotch [72], Bianchini [4] and Jungck [34] in complete metric spaces.

Theorem 5.2.1 can be extended for a sequence of maps in the form of following:

Theorem 5.2.2. Let X be a Semi-Hausdorff spaces S and T be orbitally continuous self maps of X and \{${A_i}$\} be the sequence of orbitally continuous self maps of X, f be a continuous map of $X \times X \to \mathbb{R}^+$ satisfying (5.12), (5.13) and

(5.16) \[f(A_ix, A_jy) \leq \Phi(m(x,y)) \]

where

\[m(x,y) = \max \{f(Sx, Ty), f(Sx, A_ix), f(Ty, A_jy), f(A_i x, Ty)\} \]

(5.17) \[A_i (X) \subseteq S(X) \cap T(X) \quad \text{for all} \quad i \]

(5.18) For some $x_0 \in X$ the sequence \{${x_n}$\} of points in X is such that

\[A_ix_{2n} = x_{2n+1} \quad \text{and} \quad A_jx_{2n+1} = x_{2n+2} \quad \text{for} \quad n = 0, 1, 2, \ldots, \]

has a convergent subsequence of the type \{${x_{(2p+1)n}}$\} where $p \in \mathbb{N}$ is fixed and $n \in \mathbb{N}$.

Then all the A_i's, S and T have a unique common fixed point in X.
Proof. The above theorem can be proved on the same lines as Theorem 5.2.1.

We furnish the following example in support of our Theorem 5.2.2.

Example 5.2.3. If we take \(X = [1, \infty) \) with co-countable topology \(\mathcal{J} \), then \((X, \mathcal{J})\) is a Semi-Hausdorff space. Let us define

\[A_i(x) = \frac{((i+3)x-1)}{(i+2)} \text{ for } i = 1, 2, \ldots, x \in [1, \infty) \]

\[Sx = 8x - 7, \quad Tx = 8x^2 - 7 \text{ for all } x \in X \text{ and} \]

\[f(x,y) = |x-y| \text{ for all } x, y \in X. \]

Then all the conditions of Theorem 5.2.2 are satisfied and clearly \(x = 1 \) is the unique common fixed point of all the \(A_i \)'s, \(S \) and \(T \).