


Brown, G.S. (1990), Scattering result for rough surfaces having small height but arbitrary slope, wave Motion 12 (5), pp. 475-483.


Christensen, R.M. (1979), Mechanics of Composite materials, Wiley Inter Science, N.Y.


Folias, E.S. (1965), An axial crack in a pressurised cylindrical shell, Int. J. Fracture 1, pp. 20-46.


Folias, E.S. (1989), The 3-D stress singularities at the intersection of a cylindrical inclusion and a free surface Int. J. Fracture 39, pp. 25-34.


Fox, L. and Parker, I.B. (1972), Chebyshev Polynomials in Numerical analysis, Oxford University Press.

Fresnel, A. (181b), Mémoire sur l'influence de la polarisation, p. 394.


Fu, L.S. and Mura, T., (1982), Volume integrals of ellipsoids associated with the inhomogeneous Helmholtz equation, Wave Motion 4, pp. 141–149.


Gubernatis, J.E. (1979), Long-wave approximations of the scattering of elastic waves from flows with applications to ellipsoidal voids and inclusions, J. Appl. Phys. 50, pp. 4046-4058.


Gubernatis, J.E. (1979), Long-wave approximations of the scattering of elastic waves from flows with applications to ellipsoidal voids and inclusions, J. Appl. Phys. 50, pp. 4046-4058.


Nishimura, G. and Jumbo, Y. (1955), A dynamical problem of stress concentration—stresses in the vicinity of a spherical matter included in an elastic solid under dynamical force, Faculty of Engineering, Univ. of Tokyo, 24, p. 101.


Poisson, S.D. (1829), Memoire sur l'équilibre et le mouvement des corps elastiques Memoires de l' Académie 8, pp. 357-570.


Varadan, V.K. and Varadan, V.V. (1989), Low and high frequency asymptotics (3rd series on acoustic, electromagnetic and elastic wave scattering) vol. 2, Elsevier.


Young, T. (1817), Chromatics, Supplement to the Encyclopaedia Britannica.


Zhang, Ch. and Achenbach, J.D. (1991), Effective wave velocity and attenuation in a material with distributed Penny shaped cracks, Int. J. Solids Structures 27(6), pp. 751-767.