CONTENTS

1 INTRODUCTION 1-45

1.1 Introduction 1
1.2 Image Compression Issues 2
1.3 Need For Compression: 4
1.4 Principles of Image Compression 5
1.5 Image Compression Concept 7
 1.5.1 Coding Redundancy 7
 1.5.2 Inter Pixel Redundancy 8
 1.5.3 Psycho Visual Redundancy 9
1.6 Classification of Compression Techniques 10
 1.6.1 Lossless vs. Lossy compression 10
 1.6.2 Predictive vs. Transform coding 11
1.7 Typical Image Compression System 14
1.8 Measurement of Image Quality 18
 1.8.1 Spatial Sampling Frequency 19
 1.8.2 Quantization and Tonal Response 20
 1.8.3 Spatial Resolution 21
 1.8.4 Selection of Number of Levels of Gray or Color 21
 1.8.5 Peak Signal to Noise Ratio and Mean Square Error 22
1.9 Wavelet Based Image Coding 23
1.9.1 Introduction 23
1.9.2 Transform Coding Paradigm 24
1.10 Different Types of Transforms Used for Coding 25
 1.10.1 Fourier Transforms 26
 1.10.2 Discrete Cosine Transform (DCT) 32
1.11 Wavelet Transform 36
 1.11.1 The Continuous Wavelet Transform and the Wavelet Series: 38
 1.11.2 The Discrete Wavelet Transform 39
 1.11.3 Multi-Resolution Analysis using Filter Banks 40
 1.11.4 Statistical Properties of Wavelet Transform 44
1.12 Research Objective 44

2 ENERGY MINIMIZATION METHODOLOGY 46-54
 2.1 Introduction 46
 2.2 Optimization of Image Transmission System 51

3 REVIEW OF THE PRIOR WORK 55-65

4 ARCHITECTURAL DESIGN TECHNIQUES
 FOR JOINT SOURCE – CHANNEL CODING 66-157
 4.1 Reconfigurable Wavelet Based Image Compression Algorithms 66
 4.1.1 Concepts of EZW 67
 4.1.2 EZW – The Algorithm 68
 4.1.3 Dominant Pass 70
 4.1.4 Subordinate Pass 73
4.2 Software implementation of EZW
 4.2.1 EZW decoder

4.3 Set Partitioning In Hierarchical Trees (SPIHT) Algorithm
 4.3.1 Set partitioning sorting algorithm
 4.3.2 Spatial orientation trees
 4.3.3 Coding of Algorithm

4.4 SPECK - Low Complexity Embedded Block Coder
 4.4.1 Feature of The Coder
 4.4.2 Outline of SPECK
 4.4.3 The SPECK Algorithm
 4.4.3.1 Steps of Algorithm
 4.4.3.2 Working of The SPECK Algorithm

4.5 Channel Coding: Turbo Coders
 4.5.1 Concatenated Codes:
 4.5.2 Interleaver structure:
 4.5.3 Random (Pseudo-Random) Interleaver
 4.5.4 Iterative decoding:
 4.5.5 Parallel-concatenated recursive-systematic convolutional codes: Turbo-codes: Turbo encoder structure

4.6 Turbo Decoders

4.7 Proposed Architecture of Joint Source architecture
 4.7.1 Run-time Adaptation Algorithms
 4.7.2 Energy Efficient Elimination Technique
4.8 Adaptive and Reconfigurable Joint Source Channel Coding Architecture

4.9 Comparative Performance Result of reconfigurable adaptive wavelet based image compression algorithms and JSCC algorithms.

4.9.1 EZW
4.9.2 SPIHT
4.9.3 SPECK

4.10 VLSI Performance of Digital Compression Techniques

4.10.1 ASIC implementation of SPIHT implementation for ECG application
4.10.2 FPGA implementation of SPIHT implementation for image processing application (reconfigurable approach)
4.10.3 SOC implementation of Hardware/Software Architecture for Image Compression

5 CONCLUSION

PUBLICATIONS

BIBLIOGRAPHY