List of Figures

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>(a) Schematic diagram of a hexagonal wurtzite crystal structure; The primitive unit cell is represented by the thick solid line between the three axial vectors, (b) represents the different crystallographic plane orientation in the WZ structure along the [0001] direction.</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic representation of the thermal CVD system used for the growth of various forms of GaN nanostructure; Inset shows the typical temperature profile maintained during the growth process.</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>The highly simplified diagram showing two basic operations of the TEM imaging system involving (a) diffraction mode where the DP was projected onto the viewing screen, and (b) image mode where the images were projected onto the onto the viewing screen. In each case, the intermediate lens selects either the back focal point (a) or the image plane (b) of the objective lens as its object.</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic arrangement of the micro-Raman spectrometer along with detailed internal and external components, laser, and confocal microscopy.</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>(a) Schematic diagrams of the PL processes happening in case of a direct gap semiconductor after optical excitation, (b) Density of states and level occupancies for the electrons and holes which obey the Boltzmann distribution functions.</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic band diagram of the KPFM process steps (1 to 4) of measuring the surface potential of a surface using metal tip.</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic representation and working methodology of a three-electrodes based EIS technique, (b) typical Randles’ equivalent circuit and Nyquist plot for an electrode in contact with an electrolyte (used for our study).</td>
<td>34</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic representation of the exposure facility for gas sensor (EFGS) system.</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>(a) Schematic representation of the growth of GaN NWs via VLS process; (b) a typical FESEM image of an Au terminated NWs.</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>(a) Atomic geometry of cleaved GaN plane constitutes of polar and non-polar surfaces; (b) Schematic diagram showing the dependence of Ga reactant surface diffusion length on the reaction condition. Under the N-rich condition, the surface diffusion lengths of Ga on polar and non-polar surface are relatively same that results in a small length scale of polar surface, while Ga-rich condition favors a large length scale of polar surface.</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>(a) Temperature profile with respect to the growth time and partial pressure inside the chamber; (b) shows the different temperature ramping rate employed for the growth of NWs with varying morphology.</td>
<td>42</td>
</tr>
</tbody>
</table>
Fig. 3.4 FESEM micrographs of GaN NWs grown in (a-c) faster and (d-f) relatively slow ramping rate of temperature in the CVD system; Faster temperature ramping rate randomizes the growth whereas slow ramping rate gives smooth and well defined geometry of NWs.

Fig. 3.5 Cross-sectional FESEM images of NWs grown under faster temperature ramping rate for (a) 180 min and (b) 30 min growth condition; (b) slow ramping rate of 30 min.

Fig. 3.6 TEM images of GaN NWs with catalyst particle (a) compared with NW diameter, (b) bigger than NW diameter, and (c) for a long NW with small catalyst particle compared to NW diameter.

Fig. 3.7 (a) HRTEM image of a NW grown along [0001] direction of WZ-GaN; inset shows a typical FESEM image of a perfectly hexagonal GaN NWs used for this analysis; (c) SAED pattern of a single GaN NW obtained along the WZ [0001] zone axis.

Fig. 3.8 HRTEM image of a triangular GaN NW with metal catalyst at the tip; (b) FFT corresponding to the square region of (a); inverse FT image belongs to (c) WZ-GaN Phase and (d) cubic Au phase as shown in the inset, respectively. The Scale bar in (c) and (d) is 5 nm.

Fig. 3.9 (a) HRTEM image of a biphase GaN NW; inset shows the TEM image of a triangular shaped NW (upper right), and (bottom right) showing a schematic representation along with the growth direction of the NW; (b) SAED pattern from the biphase region showing the presence of WZ and zinc-blende (noted as ZB) phase of GaN; (d) IFT lattice imaging corresponding to the zinc-blende phase of GaN.

Fig. 3.10 HRTEM image of a triangular NW grown along [1\overline{2}10] direction of WZ-GaN phase; Inset showing the SAED pattern index to [1\overline{1}00] zone axis; (b) a typical IFT lattice image of transition region which clearly showing the presence of stacking faults on the surface.

Fig 3.11 HRTEM image of a square shaped GaN NW grown along [11\overline{2}0] direction and enclosed with {0001} and {1\overline{1}00} side faces; (b) Typical cross-sectional FESEM images of the vertically aligned square shaped GaN NW. Inset-images are from different set of sample with Au nanoparticle at the tip; (c) SAED pattern of a NW, corresponding to the HRTEM image, indexed to [0001] zone axis of WZ-GaN phase.

Figs. 3.12 (a-e) Schematic representation and the corresponding observed NWs (indicated by arrow) grown by VLS mechanism with metal catalyst at the tip.

Fig. 3.13 Schematic representation showing steady state growth of NWs with (a) a smaller catalyst droplet and (b) a larger catalyst droplet; Assuming that Ga is activated through the catalyst and the reaction takes place only at the AuGa/GaN interface.
Fig. 3.14 (a) Schematic representation of the phonon dispersion in wurtzite and zinc-blende structure [with permission, Ref. 14]; Phonon branches along [111] in the zinc-blende structure is folded to approximate those of wurtzite structure along [0001] (b) Optical phonon modes in the wurtzite structures; (c) Schematic representation of surface phonon and bulk phonons.

Fig. 3.15 Room-temperature Raman-scattering spectrum of GaN NWs showing the experimentally observed data and the Lorentzian fits for the individual peaks.

Fig. 3.16 (a) Calculated SO phonon frequencies as a function of qr, full curve: SO(E_1), dashed curve: SO(A_1), horizontal lines are the LO and TO frequencies of E_1 and A_1 modes, Vertical dotted line is marked for qr=1.07; (b) Morphological study at high resolution for the GaN NWs with arrows showing the modulation of the surface in the range of 150-300 nm.

Fig. 3.17 Low temperature micro-PL spectra of (a) WZ-GaN NWs (b) WZ/zinc-blende (noted here as ZB) biphase homostructure in triangular GaN NWs using 325 nm laser excitation; the corresponding schematic representation of the emission mechanism in (c) WZ-GaN NWs and (d) WZ/zinc-blende (noted here as ZB) biphase GaN.

Fig. 3.18 (a) Large scale growth of nanotips over an area of 10 mm; (b) a set of nanotips grown in 1 hour and (c) in 3 h; (d) Magnified optical microscopic image of nanotips grown for 1 h, FESEM image (d) of a 3 h grown nanotips; inset shows the broken part of the tip region; (f) the transition of the Ga-rich base region of the N-rich smooth conical region.

Fig. 3.19 Optical microscopy images of the formation of (a) Ga droplet by annealing Ga nodule in 10 min; Nucleation of GaN by self agglomeration followed by growth of nanotips after (b) 20 min, (c) 30 min, (d) 60 min, (e) 90 min and (f) 180 min. The nanotip grown above 1 h possesses sharp tip type morphology.

Fig. 3.20 (a) FESEM image of the NPs grown at 900 °C, the corresponding TEM image of NPs grown at (b) 900 °C and (c) 950 °C.

Fig. 3.21 HRTEM image of a single nanotips around (a) base region, (b) tip region and (c) high resolution image of the transition region between polar (0001) and non-polar (1010) surface, around the tip region of the nanotips. Inset in (c) shows the magnified region of the transition region with large stacking faults.

Fig. 3.22 (a) HRTEM image of the NPs grown at 900 °C, (b) SAED pattern of single NPs obtained along the WZ $<1\bar{2}10>$ zone axis.

Fig. 3.23 Raman spectra for (a) nanotips and (b) nanoparticles showing wurtzite GaN phase.

Fig. 3.24 (a) Typical Raman spectra along the diameter of a GaN nanotip at three different locations, surface, middle and core region; Cross-sectional Raman
area mapping of a nanotip (b) along the diameter and (c) intensity
distribution at 569 cm\(^{-1}\); (d) differential stress mapping image
corresponding to peak intensity observed at 569 cm\(^{-1}\) and the shifted peak
at 587 cm\(^{-1}\).

Fig. 3.25 Typical micro-PL spectrum shows for (a) nanotips and (b) NPs; Inset in a)
shows the PL spectrum at the base region of nanotips.

Fig. 3.26 Schematic showing the possible growth mechanism of (a) GaN nanotips in
different Ga-rich and N-rich growth conditions, b) growth on polar surface;
(c) GaN NPs in N rich condition; (d) growth on non-polar surface.

Fig. 4.1 Visible-light image of the large scale growth of microbelts with growth
time of (a) 3 h, and (b) 5 h; (c) low high magnification FESEM image of the
5 h grown microbelt; high magnification FESEM image of the
microbelt surface features with the presence of nanoprotrusions for (d) 3 h
and (e) 5 h grown samples.

Fig. 4.2 Schematic representation shows (a) the formation of wurtzite GaN structure
over monoclinic Ga\(_2\)O\(_3\) core; (b) cross-sectional view of a single
Ga\(_2\)O\(_3\)@GaN microbelt; (c) the viewing direction after FIB sectioning.

Fig. 4.3 (a) Cross-sectional image of the belts showing GaN and Ga\(_2\)O\(_3\) interface.
The inset shows the diffraction pattern of the GaN layers; (b) High
magnification image of the Ga\(_2\)O\(_3\) layer showing the presence of alternating
bright and dark contrast representing planar defects; The inset shows the
diffraction pattern of the GaN and Ga\(_2\)O\(_3\) layers; (c) High-resolution image
of the GaN-Ga\(_2\)O\(_3\) interface.

Fig. 4.4 (a) A TEM image the top columnar GaN grain and (b) the corresponding
HRTEM lattice image; (c) Diffraction pattern shows the wurtzite phase of
GaN layer with [1\(\bar{1}\)3] zone axis.

Fig. 4.5 Raman spectra (a) at different locations of the belt as shown in (b) the
outset indicating crystalline phases present; (c) flat and tip side of the belt
as shown by the (d) optical micrograph images with a laser spot of < 1 \(\mu\)m.

Fig. 4.6 (a) FESEM image of a core-shell Ga\(_2\)O\(_3\)@GaN microbelt; (b) Cross-
sectional view of a microbelt showing the area of Raman mapping for (c)
GaN shell and (d) Ga\(_2\)O\(_3\) core in the same scale.

Fig. 4.7 (a) Micro-PL spectra of GaN belt at different locations; The insets show a
single belt with spots 1, 2 and 3 marked; (b) typical YL band at \(\sim\) 2.2 eV
corresponding to spot 2 in the low energy region of the spectra and
schematic representation of the atomic geometry of \(V_{Ga-O}{N}\) complex
defects; (c) Temperature dependent PL spectra of the microbelt show
blueshift with decreasing temperature.

Fig. 4.8 Energy dispersive X-Ray spectra shown across the GaN-Ga\(_2\)O\(_3\) interface.
Spot 1 corresponds to Ga\(_2\)O\(_3\) phase of the core-shell GaN-Ga\(_2\)O\(_3\) microbelts.
The percentage of O\(_2\) was reduced and N\(_2\) concentration increases

XVIII
significantly while moving towards the surface of the GaN phase (spots 2 to 4).

Fig. 4.9 Schematic representation of the growth mechanism of the core-shell Ga$_2$O$_3$@GaN microbelts.

Fig. 4.10 (a) Topography (left) and (b) SP (right) images of the GaN microbelt with nanoprotrusions (inset, scale bar 300 nm), both under a dry atmosphere. Dotted lines and circles are guided to surface features mentioned in the text. Solid circle and box represent surface features related to extended defects discussed in the text.

Fig. 4.11 (a) Topography (left) and (b) SP (right) images of the GaN thin film both under a dry atmosphere. The regular variations of height in (a) are steps on the surface of the GaN film. The inset in (b) shows the atomic configuration of the V$_{Ga}$ in the 3$^+$ and 2$^-$ charge states; Dotted lines and circles are guided to surface features mentioned in the text. Solid circle and box represent surface features related to extended defects discussed in the text.

Fig. 4.12 (a) Topography, (b) Phase and (c) SP images attributed to the oxide and oxynitride phases of the nanoprotruded region on GaN microbelts.

Fig. 4.13 SP surface profiles at (a) dry atmosphere and (b) 20% humidity level. The normalized density of SP points in each image is shown at (c); outset shows variation with a 5% increase in moisture condition over a small SP range (> 100 mV). The inset in (c) shows the schematic of water adsorption on GaN screening the electrical features of the original surface.

Fig. 4.14 SP images of the same region with different (a) 46%, (b) <15% humidity levels and the corresponding normalized density of points as indicated by the arrow; (c) The normalized density of SP points for three different humidity levels showing the decrease in SP values with increasing humidity in the AFM chamber.

Fig. 4.15 Optical image of the microbelts (a) Optical microscopic image of free standing GaN microbelts; (b) show a comparative size of the microbelt to that of the silicon micro cantilever (width ≈100 µm); (c) FESEM image (tilted view) shows the presence of nanometer-sizes surface protrusions on the microbelts.

Fig. 4.16 Contact angle measurements a) GaN epitaxial thin film, b) Top view of a water drop on a single belt, c) contact angle of the liquid drop on the single micro belt. Scale bars are 200 µm.

Fig. 4.17 (a) 3D interacting volum plot of the GaN microbelt surface by microscopic image analysis (ImageJ software) corresponding to the FESEM surface topography (inset, left corner); Inset (right corner) shows the magnified view as an indication of sinusoidal surface pattern, L (∼ 200 nm) is the length between each post and h (∼115 nm) being the height, (b) AFM microscopic image of GaN microbelt.
Fig. 4.18 Image analysis of microbelt surface (a) 3D surface plot of the typical microbelt, indicating the presence of nanocavities and (b) The shape of the meniscus at the triple contact point (x_0) within the sinusoidal surface.

Fig. 4.19 (a) Shape of the meniscus formed in the vicinity of nanocavity at different x/L ratios, (b) The macroscopic contact angle (Θ) predicted by the Cassie–Baxter model as a function of the triple-point locations (x/L), calculated for a local contact angle $\theta = 83^\circ$.

Fig. 5.1 FESEM image of GaN NTs grown on Si substrates; (a) cross-sectional view and (b) top view, (c) magnified view of the transition region from nanoclusters to NTs; Top view of GaN NTs grown over a thin layer of GaN nanoclusters by focusing on (d) GaN nanoclusters, (e) top surface of NTs.

Fig. 5.2 FESEM images of the NTs with (a) and (b) square shaped (c) nearly square shaped facets.

Fig. 5.3 GIXRD pattern of the as synthesized GaN NTs. The corresponding peaks are indexed to WZ-GaN phase.

Fig. 5.4 (a) TEM images of a NT with visible side facets, (b) tube with open end, (c) lattice images of the NT shows presence of family of m-planes and growth direction along [1\(\bar{1}\)20], (d) smooth transition between side facets and (e) corresponding lattice image; (f) SAED pattern of NTs shows WZ-GaN phase; Inset shows the region from which the pattern is generated.

Fig. 5.5 Schematic representation of NT growth mechanism via quasi vapor-solid process in the CVD technique.

Fig. 5.6 FESEM image of Pt nanocluster functionalized GaN NTs (a) from top and (b) side view.

Fig. 5.7 (a) HRTEM images of Pt nanoclusters functionalized NT decorated on NT walls with different crystalline planes; (b) SAED pattern showing the presence of both the phases of WZ-GaN nanotube and cubic Pt nanoclusters; Corresponding bright (e) and (f) dark field image of Pt-decorated GaN NTs recorded by taking <111> diffraction spot of Pt; Inset shows a pristine NT.

Fig. 5.8 Shows the average size distribution of Pt cluster decorated on the NTs wall.

Fig. 5.9 Cross-sectional FESEM images and the corresponding EDX analysis showing the distribution of Pt nanocluster in the (a) surface, (b) middle and (c) close to the substrate region of the GaN NTs.

Fig. 5.10 (a) Raman spectra of GaN NTs at room temperature corresponding to WZ-GaN phase; (b) Low temperature micro-PL spectra of GaN NTs using 325 nm laser excitation. The spectra possess a strong I_2 line at low temperatures.

Fig. 5.11 Raman spectra recorded by varying the laser power from 2 to 40 mW of (a) control GaN NTs, (b) Pt decorated NTs; (c) laser power dependent change
in the line width and Raman peak shift corresponding to E_2(high) mode of as-grown samples; (d) Raman intensity plots corresponding to β-Ga$_2$O$_3$ and WZ-GaN phases showing the evolution of the latter over the former.

Fig. 5.12 (a) Laser induced photo-fragmentation of NTs with different laser power (4-40 mW), magnified image of the hole region at (b) 40 mW and (c) 20 mW laser power irradiation; (d) high resolution image of the photo-fragmented NTs and (e) along the close proximity of laser heated

Fig. 5.13 Single Pt-decorated GaN NT before and after (a) 40 mW, (b) 20 mW laser irradiation; (c) Raman spectra of single Pt-decorated GaN NT within and outside of the laser heated area; (d) single control GaN NT before and after laser irradiation with 40 mW laser power.

Fig. 5.14 Raman spectra of Pt-GaN NTs with increasing substrate temperature from RT to 773 K with 4 mW laser irradiation in air ambient. All the spectra correspond to WZ-GaN.

Fig. 5.15 (a) Raman spectra of Pt-decorated GaN NTs recorded from 80 K to 473 K with 40 mW laser irradiation in N$_2$ flow condition. All the spectra are indexed to two distinct phases, WZ-GaN and β-Ga$_2$O$_3$ (*); (b) The Raman intensity of 200 cm$^{-1}$ peak corresponds to β-Ga$_2$O$_3$ phase with varying temperature.

Fig. 5.16 Schematic representation of laser induced catalytic oxidation and photo-fragmentation region of Pt-decorated GaN NTs.

Fig. 5.17 Time dependent changes in resistance of Pt decorated GaN NTs at (a) RT and (b) 373 K with different H$_2$ concentration; (c) relative sensitivity to H$_2$ at different temperatures for Pt coated and control NTs; (d) Arrhenius plot of the rate of change in resistances for the highest change in resistance (10-30 sec) with temperature.

Fig. 6.1 Schematic representation showing all the series of functionalization steps involved for immobilization and hybridization of specific DNA on the PAMAM dendrimer modified GaN nanowire.

Fig. 6.2 (a) Low temperature micro-PL spectra of GaN NWs functionalized with different bioorganic molecules and DNA using 325 nm laser excitation; (b) Schematic PL band diagram of the various transition processes involved before and after surface functionalization of NWs.

Fig. 6.3 Raman spectra of p-DNA immobilized GaN NWs. The sharp peaks in the range of 740 to 890 are corresponding to different vibrational modes of the DNA molecule.

Fig. 6.4 (a) Nyquist plots, imaginary impedance $Z''(\omega)$ vs real impedance $Z'(\omega)$, of pristine GaN NWs and p-DNA modified NWs. Inset shows the Randles equivalent circuit comprised of R_s, R_p, Q and Warburg resistance W; (b) Optimum change in the R_p value of the p-DNA/PAMAM/GaN NWs sensor probe in the Duplex buffer medium over a time period of 24 h without and
with the presence of ct-DNA.

Fig. 6.5 In-situ impedance spectra of the p-DNA/PAMAM/GaN NWs sensor probe during the hybridization process by varying the ct-DNA concentration over a range of 0.1×10^{-18} to 10×10^{-9} M level at a constant OCP value.

Fig. 6.6 Comparative bar diagram showing the relative change in R_p value of the p-DNA/PAMAM/GaN NWs sensor probe against various concentrations of ct-DNA and sm-DNA.

Fig. 6.7 In-situ impedance spectra of the p-DNA/PAMAM/GaN NWs sensor probe during hybridization process using (a) 1 Gray γ-irradiated and (b) 10 Gray γ-irradiated ct-DNA over a period of 5 h in the duplex buffer solution; (c) Comparative bar diagram showing the relative change in R_p value of the p-DNA/PAMAM/GaN NWs sensor probe against various concentrations of ct-DNA, sm-DNA and γ-irradiated ct-DNA molecules.

Fig. 6.8 (a) Schematic illustration of the hetero-interfaces formed at the interface between GaN NWs and bioorganic layer; (b) the corresponding band diagram of GaN NWs and the molecular orbitals, namely HOMO and LUMO levels of the organic linker and the DNA molecules. At the hetero-interface an IDP layer develops as a result of relevant molecular band offset. The substantial change in the IDP layer during the hybridization process forms the basis of the present impedemetric DNA biosensor.

Fig. 7.1 Schematic representation of (a) the growth of GaN nanoparticles at 900 °C in the CVD technique, and (b) the steps for COOH surface functionalization of GaN NPs.

Fig. 7.2 Typical Raman spectra of pristine and COOH functionalized GaN NPs using 514.5 nm laser lines. The Raman spectra reveal wurtzite phase of GaN along with the appearance of new peaks after surface modification. These new peaks correspond to the vibration of surface functional groups in the range of 1200 to 1800 cm$^{-1}$.

Fig. 7.3 Inhibition of biofilm formation by GaN NPs and carboxylic functionalized nanoparticles in different bacterial species a) *S. aureus*, b) *P. aeruginosa*, c) *E. coli* and d) *P. putida*

Fig. 7.4 FESEM images of the planktonic cells; (a) Escherichia coli -EC, (b) *Pseudomonas putida* –PP and (c) *Pseudomonas aeruginosa* - PA01 grown in the LB medium without NPs; (d) to (e) the morphology of the corresponding planktonic cells grown in the presence of 1μg of NPs, and (g) to (i) the corresponding high magnified image of the damage cells.

Fig. 7.5 (a) Morphology of *Pseudomonas aeruginosa* - PA01 cultured under higher concentration of NPs (25 μg), and (b) FESEM image showing the agglomeration of NPs around the cell wall leading to the death.

Fig. 7.6 (a) Comparative Raman spectra of *Pseudomonas putida* –PP cells and biofilms incubated in the presence of 1μg of NPs with that of untreated;
Typical optical microscopy image of (b) untreated PP cells, (c) single PP cell, (d) PP cells incubated with 1µg of NPs in the culture medium after 24 h, and (e) the corresponding biofilm developed on Si substrate; (f) Typical Raman spectrum of the LB medium in the range of 900 to 2100 cm$^{-1}$.

Fig. 7.7 (a) Comparative Raman spectra of untreated cells (blue) and cells incubated in presence of 1µg of NPs (red) (a) Escherichia coli -EC, (b) Pseudomonas aeruginosa- PA01 and (c) Staphylococcus aureus- SA cells.

Fig. 7.8 (a) Optical micrograph of the untreated Pseudomonas aeruginosa- PA01 and (b) the corresponding Raman mapping of Amide I (1663 cm$^{-1}$) distribution within the mapped area of 30 X 40 µm [as indicated in the square region in (a)]; comparative (c) optical image and (d) Raman mapping of Pseudomonas aeruginosa- PA01 cells incubated with a concentration of 1µg of NPs in the culture medium.

Fig. 7.9 Typical Raman mappings of amide I distribution in the untreated planktonic cells and the corresponding cells incubated with 1µg of NPs in the growth medium; (a) and (b) Escherichia coli –EC at 1665 cm$^{-1}$, (c) and (d) Pseudomonas putida –PP at 1663 cm$^{-1}$ and (e and f) Staphylococcus aureus- SA at 1659 cm$^{-1}$.

Fig. 7.10 Micrograph of a single Pseudomonas putida cell incubated with 1µg of NPs, (b) corresponding Raman imaging at 1663 cm$^{-1}$; Raman maps for three different protein distribution at frequency (c) 1663 cm$^{-1}$ (Amide I), (d) 1581 cm$^{-1}$ (Amide II) and 1336 cm$^{-1}$ (Amide III).

Fig. 7.11 (a) Micrograph of a single untreated Pseudomonas putida cell, and (b) the corresponding Raman imaging at 1663 cm$^{-1}$(Amide I).

List of Tables

Table 1.1 Comparison of basic physical properties between GaN and other widely used semiconductors.

Table 1.2 Summarizes potential research area pertaining to 1D GaN nanostructures.

Table 3.1 Raman modes in the bulk and various GaN nanostructures reported in this study at 300 K, and the corresponding phonon lifetime (for nanowires) and symmetry assignments; ZB refer to the zone-boundary phonon. The Raman spectra of GaN nanotip, nanoparticles, and
nanotubes are discussed subsequently.

Table 5.1 Comparative H₂ sensing properties of selected promising nanomaterials to that of values reported in this work.

Table 6.1 DNA protocols used in this study

Table 7.3 Raman band assignment of planktonic cells in the frequency range of 1000-2000 cm⁻¹

List of Abbreviation

1D - One Dimensional
3D - Three dimensional
AFM- Atomic Force Microscopy
BB- Blue band
CLRS- Confocal Micro-Raman Spectroscopy
CNT- Carbon Nanotubes
CVD- Chemical Vapor Deposition
DAP- Donor-Acceptor-Pair
DNA- Deoxyribonucleic Acid
p-DNA- Probe DNA
t-DNA- Target DNA
ct-DNA- Complementary Target DNA
sm-DNA- Single Mismatch DNA
EC- Escherichia coli
EDX- Energy Dispersive X-Ray Spectroscopy
EDC- Ethyl-3-(3-dimethylaminopropyl) carbodiimide
EFRS- Exposure Facility for Gas Sensor
EIS- Electrochemical Impedance Spectroscopy
FB- Free-to-Bound
FESEM- Field Emission Electron Microscopy
FFT- Fast Fourier Transform
FiB- Focused Ion Beam
G3-PAMAM- Third Generation Poly-(amidoamine)-Dendrimer
H1N1- Human Influenza A
HOMO- Highest Occupied Molecular Orbital
HOPG- Highly Ordered Pyrolytic Graphite
HRTEM- High Resolution Electron Microscopy
IDB- Inversion Domain Boundaries
IDP- Interface Dipole Layer
KPFM- Kelvin Probe Force Microscopy
LB- Luria Bertini
LED- Light Emiting Diode
LO- Longitudinal Optical
LUMO- Lowest Unoccupied Molecular Orbital
MBE- Molecular Beam Epitaxy
NBE- Near Band Edge
NP- Nanoparticle
NT- Nanotube
NW- Nanowire
OCP- Open Circuit Potential
PA- Pseudomonas aeruginosa
PA01-Pseudomonas aeruginosa
PL- Photoluminescence
Q- Constant Phase Element
RT- Room Temperature
R_p - Polarization Resistance
R_s - Solution Resistance
SA- Staphylococcus aureus
SAED- Selected Area Electron Diffraction
SERS- Surface Enhanced Raman Scattering
SMB- Stacking Mismatch Boundaries
SO- Surface Optical
SP- Surface Potential
TO- Transverse Optical
VLS- Vapor– Liquid–Solid
VS- Vapor-Solid
WZ- Wurtzite
YL- Yellow Luminescence
ZB- Zone Boundary