List Of Publications

Refereed Journals:

1. **Elliptic Flow of Thermal Dileptons as a Probe of QCD Matter.**
 Preprint : Nucl-th/1111.2159

2. **Evolution of Collectivity as a Signal of Quark Gluon Plasma Formation in Heavy Ion Collisions.**
 Payal Mohanty, Jan-e Alam, Bedangadas Mohanty.

3. **Characterizing the Partonic Phase by Dilepton Interferometry.**
 Payal Mohanty, Jan-e Alam, Bedangadas Mohanty.

4. **Radial Flow from Electromagnetic Probes and Signal of Quark Gluon Plasma.**
 Payal Mohanty, Jajati K Nayak, Jan-e Alam, Satosh K Das.
 Preprint : Nucl-th/0910.4856

5. **Nuclear Suppression at Low energy Heavy Ion Collision.**
 Santosh K das, Jan-e Alam, Payal Mohanty, Bikash Sinha.
 Preprint : Nucl-th/0910.4853
6. **Dragging Heavy Quarks in Quark Gluon Plasma at the Large Hadron Collider.**

 Santosh K das, Jan-e Alam, Payal Mohanty.

 Preprint : Nucl-th/1003-5508

7. **Probing Quark Guon Plasma Properties by Heavy Flavors.**

 Santosh K das, Jan-e Alam, Payal Mohanty.

 Preprint : Nucl-th/0908.4194

Axiv Submission:

1. **Thermal Radiation from an Expanding Viscous Medium.**

 Sukanya Mitra, Payal Mohanty, Sourav Sarkar, Jan-e Alam.

Conference Proceedings in Journals:

1. **Equilibration in Quark Gluon Plasma.**

 Santosh K das, Jan-e Alam, Payal Mohanty.

2. **Scaling Quark Gluon Plasma by HBT Interferometry with Lepton Pairs**

 Payal Mohanty, Jan-e Alam

 Proceedings of Science PoS(WPCF2011)040

 Preprint: Nucl-th/1202.2189
Conference Proceedings:

1. **Freeze Out Time in Ultra-Relativistic Heavy Ion Collisions.**
 Santosh K Das, Payal Mohanty, Jajati K Nayak and Jan-e Alam

2. **Flow from Electromagnetic Radiation**
 Payal Mohanty, Jajati K Nayak, Jan-e Alam, Satosh K Das.

3. **Dilepton Interferometry : a Tool to Characterize Different Phases of Collision in HIC**
 Payal Mohanty, Jan-e Alam, Bedangadas Mohanty

4. **Probing Elliptic Flow of QCD Matter by Lepton Pairs**
 Payal Mohanty, Victor Roy, Sabyasachi Ghosh, Santosh K Das,
 Bedangadas Mohanty, Sourav Sarkar, Jan-e Alam, Asis K Chaudhuri
 Proceedings of DAE Symp. on Nucl. Phys. (India) **56** (2011) 910

5. **Thermal Radiation from an Expanding Viscous Medium**
 Sukanya Mitra, Payal Mohanty, Sourav Sarkar, Jan-e Alam
 Proceedings of DAE Symp. on Nucl. Phys. (India) **56** (2011) 936

6. **Dilepton Interferometry at Different Collision Energies**
 Payal Mohanty, Jan-e Alam, Bedangadas Mohanty
 Proceedings of DAE Symp. on Nucl. Phys. (India) **56** (2011) 960
Notation and Conventions

In the thesis, I have used the natural units, $\hbar = c = k_B = 1$. The matrix tensor used is $g^{\mu\nu} = \text{diag}(1, -1, -1, -1)$. Variables in bold face denote 3-vectors. Most of the notation is introduced during the discussion and the frequently used notations are enlisted below:

$N - N$ Nucleon-Nucleon
$p - p$ proton-proton
$p - A$ proton-Nucleus with mass number A
$A - A$ Nucleus-Nucleus with mass number A
s, t, u Madelstam Variables, where
$s = (p_1 + p_2)^2$, $t = (p_1 - p_3)^2$, $u = (p_1 - p_4)^2$
$\mu_B = \mu$ Baryonic chemical potential
τ Proper time ($= \sqrt{t^2 - z^2}$)
y Particle rapidity ($= \frac{1}{2} \ln \left[\frac{E + p_z}{E - p_z} \right]$)
η Space-time rapidity ($= \tan^{-1}(t/z)$), thus $t = \tau \cosh \eta$ and $z = \tau \sinh \eta$
M Invariant mass of lepton pairs
p_T transverse momentum
M_T transverse mass of lepton pair ($M_T^2 = M^2 + p_T^2$)
m_T transverse mass of hadron with mass, m_h ($m_T^2 = m_h^2 + p_T^2$)
ϵ Energy density
P Thermodynamic pressure
s Entropy density
V Vector mesons
τ_i Thermalization time
T_i Thermalization temperature
T_c Transition temperature
T_{ch} Chemical freeze-out temperature
T_f Thermal freeze-out temperature
d^4x four-volume
K average pair momentum ($= (p_1 + p_2)/2$), off-shell
q relative pair momentum ($= p_1 - p_2$), off-shell