List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page Nos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Numerous co-morbid conditions associated with obesity</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Obesity as the underlying risk factor of cardiovascular disease</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Dyslipidemia in Obesity</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Adipocytes at the crossroads of energy homeostasis</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Exogenous and endogenous pathway of cholesterol</td>
<td>18</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Corm of Amorphophallus campanulatus</td>
<td>30</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Seeds of Foeniculum vulgare</td>
<td>34</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Shoot of Hibiscus rosa sinensis</td>
<td>38</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Fruit of Luffa cylindrica</td>
<td>44</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>Fruit of Trichosanthes anguina</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Effect of plant extracts and simvastatin on serum total cholesterol levels.</td>
<td>85</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Effect of MEHR on serum TC, TG, LDL, VLDL and HDL levels in Triton WR 1339 induced hyperlipidemic rats.</td>
<td>88</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Effect of META on serum TC, TG, LDL, VLDL and HDL levels in Triton WR 1339 induced hyperlipidemic rats.</td>
<td>90</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Chromatogram of (1) MEHR and (2) META under UV 366 nm after derivatization.</td>
<td>109</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Chromatogram of (1) MEHR and (2) META under day light after derivatization.</td>
<td>109</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Chromatogram of (1) MEHR and (2) META under day light and under UV 366 nm after derivatization.</td>
<td>110</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Chromatogram of MEHR (Track 1-3) and META (Track 4-6) for flavonoids, under 366 nm after derivatization with anisaldehyde sulphuric acid reagent.</td>
<td>111</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Chromatograms of MEHR (Track 1-3) and META (Track 4-6) for flavonoids, under 540nm after derivatization with anisaldehyde sulphuric acid reagent.</td>
<td>112</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>HPTLC peak densitogram display of MEHR for flavonoids at 366 nm</td>
<td>112</td>
</tr>
</tbody>
</table>
Figure 3.7: HPTLC peak densitogram display of MEHR for flavonoids at 540 nm

Figure 3.8: HPTLC peak densitogram display of META for flavonoids at 366 nm

Figure 3.9: HPTLC peak densitogram display of META for flavonoids at 540 nm

Figure 3.10: Chromatograms of MEHR (Track 1-3) and META (Track 4-6), under 366nm after derivatization with anisaldehyde sulphuric acid reagent.

Figure 3.11: Chromatograms of MEHR (Track 1-3) and META (Track 4-6), under 540nm after derivatization with anisaldehyde sulphuric acid reagent.

Figure 3.12: HPTLC peak densitogram display of MEHR for sterols at 366 nm

Figure 3.13: HPTLC peak densitogram display of MEHR for sterols at 540 nm

Figure 3.14: HPTLC peak densitogram display of META for sterols at 366 nm

Figure 3.15: HPTLC peak densitogram display of META for sterols at 366 nm

Figure 3.16: Chromatograms of MEHR (Track 1-3) and META (Track 4-6) for saponins, under 366nm after derivatization with anisaldehyde sulphuric acid reagent.

Figure 3.17: Chromatograms of MEHR (Track 1-3) and META (Track 4-6) for sterols, under 540nm after derivatization with anisaldehyde sulphuric acid reagent.

Figure 3.18: HPTLC peak densitogram display of META for saponins at 366 nm

Figure 3.19: HPTLC peak densitogram display of MEHR for saponins at 540 nm

Figure 3.20: HPTLC peak densitogram display of META for saponins at 366 nm

Figure 3.21: HPTLC peak densitogram display of META for
saponins at 540 nm

Figure 3.22: Chromatograms of MEHR (Track 1-2), β-sitosterol (Track 3-9) and META (Track 10-11), under 366 nm after derivatization with anisaldehyde sulphuric acid reagent.

Figure 3.23: Chromatograms of MEHR (Track 1-2), β-sitosterol (Track 3-9) and META (Track 10-11), under 540 nm after derivatization with anisaldehyde sulphuric acid reagent.

Figure 3.24: HPTLC peak densitogram display of MEHR for quantification of β-sitosterol at 540 nm (Track 1 from figure 3.23)

Figure 3.25: HPTLC peak densitogram display of β sitosterol

Figure 3.26: HPTLC peak densitogram display of META for quantification of β sitosterol

Figure 3.27: Standard β-sitosterol calibration curve

Figure 3.28: Chromatograms of MEHR (Track 1-2), META (Track 3-4) and quercetin (Track 5-10), under 254 nm for quantification of quercetin.

Figure 3.29: Chromatograms of MEHR (Track 1-2), META (Track 3-4) and quercetin (Track 5-10), under 366 nm for quantification of quercetin.

Figure 3.30: HPTLC peak densitogram display of MEHR for quantification of quercetin at 270 nm (Track 1 from figure 3.28)

Figure 3.31: HPTLC peak densitogram display of META for quantification of quercetin at 270 nm (Track 3 from figure 3.28)

Figure 3.32: HPTLC peak densitogram display of quercetin at 270 nm

Figure 3.33: Standard quercetin calibration curve

Figure 4.1: Effect of MEHR and META on body weights of rats fed with HFD.

Figure 4.2: Effect of MEHR and META on body weights of rats fed with HFD.

Figure 4.3: Effect of MEHR and META on HDL(A), TC(B), LDL(C), VLDL(D) and TG(E) of rats fed with HFD.

Figure 4.4: Effect of MEHR and META on serum glucose(A),
AST(B) and ALT(C) levels of rats fed with HFD.

Figure 4.5: Effect of MEHR and META on abdominal circumference of rats fed with HFD.

Figure 4.6: Effect of MEHR and META on liver(A), kidney(B), peritoneal fat(C) and perirenal fat(D) of rats fed with HFD.

Figure 4.7: Effect of MEHR and META on fecal and liver fat content of rats fed with HFD.

Figure 5.1: *In vitro* inhibitory effect of MEHR on PL activity

Figure 5.2: *In vitro* inhibitory effect of META on PL activity

Figure 5.3: *In vitro* inhibitory effect of orlistat on PL activity

Figure 5.4: Michaelis-Menten kinetics plot for *in vitro* inhibitory activity of MEHR on PL at different substrate concentrations

Figure 5.5: Michaelis-Menten kinetics plot for *in vitro* inhibitory activity of META on PL at different substrate concentrations

Figure 5.6: Lineweaver–Burk plot for *in vitro* inhibitory activity of MEHR on PL at different substrate concentrations

Figure 5.7: Lineweaver–Burk plot for *in vitro* inhibitory activity of META on PL at different substrate concentrations

Figure 5.8: *In vitro* effect of MEHR on HMG CoA reductase activity

Figure 5.9: *In vitro* effect of META on HMG CoA reductase activity

Figure 5.10: *In vitro* effect of atorvastatin on HMG CoA reductase activity

Figure 5.11: *Ex vivo* inhibitory activity of MEHR, META and atorvastatin on HMG CoA reductase enzyme in high fat diet induced obese rats

Figure 6.1: Mean body weight changes of rats treated with META at dose levels of 0 (control), 250, 500 and 1000 mg/kg/day for 4 weeks

Figure 6.2: Mean body weight changes of rats treated with META at dose levels of 0 (control), 500 and 1000 mg/kg/day for 4 weeks and after recovery period of 2 weeks in satellite group
Figure 6.3: Food intakes in rats treated with META at dose levels of 0 (control), 250, 500 and 1000 mg/kg/day for 4 weeks

Figure 6.4: Food intakes of satellite group rats treated with META at dose levels of 0 (satellite control), 500 and 1000 mg/kg/day for 4 weeks and after recovery of 2 weeks

Figure 6.5: Water consumption in rats treated with META at dose levels of 0 (control), 250, 500 and 1000 mg/kg/day for 4 weeks

Figure 6.6: Water consumption of satellite group rats treated with META at dose levels of 0 (satellite control), 500 and 1000 mg/kg/day for 4 weeks and after recovery of 2 weeks

Figure 6.7: AST, ALT and ALP values of rats treated with META for 4 weeks in treatment groups and after recovery of 2 weeks in satellite groups

Figure 6.9: Representative H and E images of the liver.

Figure 6.10: Representative H and E images of the kidney

Figure 6.11: Representative H and E images of the pancreas

Figure 6.12: Representative H and E images of the spleen

Figure 6.13: Representative H and E images of the testis