CONTENTS

A. SYNOPSIS

B. LIST OF PUBLICATIONS

C. LIST OF FIGURES

D. LIST OF TABLES

1. **CHAPTER 1: INTRODUCTION**

 1.1 Coherence and Interference in Atom-Field Interaction
 1.1.1 Rabi Oscillations and Dressed States
 1.1.2 Autler-Townes Splitting
 1.1.3 Coherent Population Trapping
 1.1.4 Electromagnetically Induced Transparency
 1.1.5 Electromagnetically Induced Absorption
 1.2 Role of Incoherence
 1.2.1 Collisional Relaxation
 1.2.2 Spontaneously Generated Coherence
 1.2.3 Laser Phase Fluctuations
 1.3 Scope and Perspectives
 1.3.1 Ultra-Precision Measurements
 1.3.2 Amplification without Inversion
Contents

1.3.3 Slow, Fast and Stopped Light 16
1.3.4 Negative Refraction 17
1.3.5 Enhancement of Nonlinear Processes 18
1.4 Organization of the Thesis 19

2. CHAPTER 2: MASTER EQUATION APPROACH TO LASER MATTER INTERACTION 23-43

2.1 Introduction 23
2.2 Derivation of the Master Equation for Three-Level Systems 25
 2.2.1 Hamiltonian 25
 2.2.2 Time Evolution of the System 27
 2.2.3 Master Equation for A, V and Ε Systems 36
2.3 Master Equation for Four-Level Systems 37
 2.3.1 Degenerate Double Lambda System 38
 2.3.2 Tripod System 39
 2.3.3 N- Resonance System 39
2.4 Master Equation for Dipolar Molecular Systems 40

3. CHAPTER 3: COHERENCE AND INTERFERENCE IN THREE-LEVEL DIPOLAR MOLECULE 44-66

3.1 Introduction 44
3.2 Theoretical Formulation 46
3.3 Absorption Spectrum and Dispersion 49
3.4 Doppler Averaging 55
 3.4.1 Linewidth of EIT in a Doppler Broadened Medium 56
 3.4.2 Dispersion at EIT Resonance 60
3.5 Role of Virtual Mechanism 62
3.6 Configuring a Three-level Molecular System 65

4. CHAPTER 4: COHERENCE IN DEGENERATE DOUBLE A SYSTEM 67-90

 4.1 Introduction 67
 4.2 Theoretical Formulation 69
 4.3 Perturbative Analysis and Dressed States 71
 4.4 Suppression of Subnatural Resonance 76
 4.5 Electromagnetically Induced Transparency 79
 4.6 Coherent Spectroscopy in Six-Level Configuration 83
 4.7 Experimental Realization of Simultaneous Dressing 85
 4.7.1 Experimental Scheme 85
 4.7.2 Results and Discussion 88

5. CHAPTER 5: AMPLIFICATION WITHOUT INVERSION IN DEGENERATE DOUBLE A SYSTEM 91-108

 5.1 Introduction 91
 5.2 Model and Numerical Results 92
 5.3 Perturbative Analysis 96
6. CHAPTER 6: COHERENCE AND INTERFERENCE IN DOUBLE DARK RESONANT SYSTEMS

6.1 Introduction
6.2 Double Control EIT Resonances in Tripod System
 6.2.1 Model and Basic Formulation
 6.2.2 Results and Discussion
6.3 Pump - probe spectroscopy of N-resonance system
 6.3.1 Variants of N System
 6.3.2 Theoretical Formulation
 (a) Model A
 (b) Model B
 (c) Model C
 6.3.3 Absorption Spectra
 (a) Absorption in Model A
 (b) Absorption in Model B
 (c) Absorption in Model C
6.4 Spontaneously Generated Coherence in N system
 6.4.1 Theoretical Formulation
 6.4.2 Perturbative Analysis
6.4.3 Results and Discussion 130
6.5 EIT in Λ and N System: Experimental 135

7. CHAPTER 7: PHASE FLUCTUATIONS IN COHERENT DYNAMICS OF N-RESONANCE 139-164

7.1 Introduction 139
7.2 Theoretical Formulation 141
 7.2.1 Numerical Analysis 145
 7.2.2 One Time Averages 146
7.3 Effect of Phase Fluctuations on Three- and 2+1- Photon Resonances 147
 7.3.1 Steady - State Population Distribution 148
 (a) Three-Photon Resonance 148
 (b) 2+1-Photon Resonance 155
 7.3.2 Time Dependent Behaviour of the Population Distribution 159
7.4 Effect of Phase Fluctuations on Absorption 163

8. CHAPTER 8: COHERENCE INDUCED NEGATIVE REFRACTIVE INDEX IN FOUR-LEVEL ATOMIC MEDIUM 165-184

8.1 Introduction 165
8.2 Approaches for Realization of Negative Refraction Index 167
8.3 Description of the Models 170
8.4 Realization of Negative Refractive Index in Model (a) 171
Contents

8.4.1 Theoretical Formulation 171
(a) Density Matrix Equations and Coherences 171
(b) Electric and Magnetic Response 173
8.4.2 Results and Discussion 175
8.5 Realization of Negative Refractive Index in Model (b) 179
8.5.1 Theoretical Formulation 179
8.5.2 Results and Discussion 181

9. CHAPTER 9: CONCLUSIONS AND FUTURE SCOPE OF THE WORK 185-193

9.1 Conclusions 185
9.2 Future Scope of the Work 192

APPENDIX 194-205

A-1 Zero Order Polarizations of Degenerate Double A System 194
A-2 Absorption and Dispersion in Degenerate Double A System 195
A-3 Low Frequency Coherence in Degenerate Double A System 197
A-4 Probability Amplitudes for Quantum Jump Approach 199
A-5 Steady State Populations in Tripod System 200
A-6 Steady State Populations in N System 201
A-7 Non-Zero Elements of Matrix M^{qs} in N System 204

BIBLIOGRAPHY 206-221