List of Figures

1.1 Block diagram of a communication system ..1
1.2 Generic BPL system network...5
1.3 CENELAC frequency allocation in Europe...7
1.4 Increasing popularity of PLCC with reference to home networking in USA..........10
1.5 Percentage of population having access to network in India.................................12
2.1 Block diagram of the experimental setup for analysis of noise in PL.................17
2.2 Design of the coupler ...18
2.3 Comparison of cut off of the coupler varying (a) L and (b) C.................................19
2.4 The low frequency noise model..23
2.5 Maximum and minimum noise at a particular frequency at frequencies (a)
 ≤125kHz (b) ≤1.25MHz...23
2.6 The background noise for higher frequencies (≤62.5MHz)....................................24
2.7 Non Gaussian background noise compared to Gaussian data with the same mean
 and standard deviation..25
2.8 Variation of background noise with time, at frequencies (a) ≤125kHz and (b) ≤
 1.25MHz ...26
2.9 The Nakagami and Rayleigh fading..28
2.10 The K-S Statistics (D_n) for different setups (S1, S2, S3=Setup1, 2, 3).............29
2.11 The background noise in different setup...31
2.12 The fading figure for different setups...33
2.13 Impulsive Noise and frequency content..34
2.14 Switching transients and frequency content...34
2.15 Synchronous noise with AC mains and frequency content.................................35
2.16 Noise due to various household loads and their frequency content.................36,37
4.1 Water filling approach ... 67
4.2 Best and worst case indoor PL channel noise levels and bounds of AWGN ... 69
4.3 The channel capacity for CENELAC-A band using Shannon capacity
 Theorem and water filling with different channel attenuation and ideal filter
 Approximation .. 70
4.4 CENELAC B, C and D band capacity bounds based on water filling and white
 Noise using an ideal filters approximation .. 70
4.5 Water filling capacity bounds for best and worst case attenuation for BPL 73
5.1 Comparison of the simulated and experimental PSD 77
5.2 The (a) impulse response and (b) the corresponding transfer function obtained from
 the TL theory and FFT of the impulse response 79
5.3 The block diagram of the adaptive communication model 80
5.4 Methodology used in simulation of communication channel and system used 81
5.5 Comparison of digital modulation schemes in AWGN and simulated noise
 without frequency selectivity (No. of transmitted bits=10^8), PL=in presence of PL
 noise .. 82
5.6 Comparison of transmitted signal power for digital modulation schemes using
 frequency hopping and simulated noise (No. of transmitted bits=10^8),
 FH=frequency hopping scheme in PL .. 82
5.7 Comparison of transmitted signal power for AWGN, single frequency and
 frequency hopping for AM modulation (No. of transmitted symbols=10^8) 83
5.8 Capacity of channel in a bandwidth of 4 kHz for fixed and variable frequency 85
6.1 The bandwidth of the 33.6 kbps modem signal 87
6.2 Connection of the modems through couplers 88
6.3 Modem using hybrid and couplers .. 89

xxiii
6.4 The single carrier transceiver ...90
6.5 The dual carrier transceiver ...94
6.6 The frequency response of the line tuners ..95
6.7 Echo cancellation using DSP ...96
6.8 The distribution network for testing performance of the dual carrier transceiver ...97
6.9 Signal bandwidth for 33.6 kbps and 1.2 kbps transmission98
6.10 Capacity of channel in a bandwidth of 4 kHz centered at 170 kHz and 430 kHz ...100
7.1 The DSK6713 development board ..102
7.2 Adaptive filters ..104
7.3 The proposed hardware setup for processing of signals centered at 101 kHz and 402 kHz using DSK6713 ..107
7.4 Channel selection algorithm ...108
7.5 Implementation of the algorithm in the CCS ..109
7.6 The echo canceller in the hybrid ..111
7.7 Echo cancellation parameters using signal from signal generators113
7.8 $r(t)+r(t)$ and $e(t)$ for (a) LMS, FO:46, $\mu=5$ (b) LMS, FO:46, $\mu=1.e^{-2}$, (c) LMS, FO:46, $\mu=1.e^{-4}$ (d) LMS, FO:35, $\mu=3e^{-4}$ (e) NLMS, FO: 4, (f) NLMS, FO: 46 ...115, 116
7.9 Testing the EC algorithm using audio signal ..117
7.10 $r(t)$ and $e(t)$ for (a) LMS with and $\mu=1e^{-4}$, FO=46 and (b) NLMS, FO=46 ...118
7.11 Comparison of NLMS and LMS Algorithm for the same input signal, input Signal (1a, 2a), residual echo or error signal (1b, 2b), attenuation (1c, 2c) for 46th order filter ...118
7.12 The experimental setup for the dual carrier transceiver in Section 6.5....119
8.1 Comparison of channel capacity for (a) narrowband (b) broad band transmission in different places

A-1 The coupler

A-2 Low

pass

filter

A-3 Experimental arrangement for noise data acquisition

A-4 Power amplifier

A-5 Single channel transceiver

A-6 The experimental setup for dual channel transceiver

C-1 Circuit diagram of the power amplifier in Section 3.5.3

C-2 Circuit diagram of single channel transceiver

C-3 Circuit diagram of dual channel transceiver