The site Bichikri is situated on a Chinthong massif in West Karbi Anglong, Assam. The longitude and latitude of the site are 92°30'27" E and 25°57'51" N respectively. The altitude is 464m msl. The discovery of the site was not a difficult task because it is the fame communal ritual (Bichikri Rongker) spot of the local people and prominently marked in folktale too.

The area was explored on pedestrian and located a number of artefacts and features. Thus, a trial trench was laid out and dug under the supervision of Prof. D.K Medhi, Deptt. of Anthropology, Gauhati University in the year 2012. The significant remains include potteries of fair antiquity, bricks and magnificent rampart found in situ. Besides artificial swamp pool of fairly large size and depth with rich aquatic life on top of the hill lends fascination.

The site lies on a Massif inside a deep forest and it was covered by a thicket of bamboo. The area is entirely covered by trees, bamboo and forest. The dominated trees species are Ficus religiosa L.; (moraceae), Ficus elastic Roxb. ex. Hornem,
Among the bamboo species the dominant one is the *dendrocalamus hamiltonii* Nees and Arn., and *Neohouzeaua dullooa* (Gamble) A. Camus, and also several reeds and canes. The site is overlooking at *Karbi Lankpi* River which flows at a distance of about a mile to the eastern horizon. The northern side flow *Amtereng* River while the southern and western sides are featured by a series of interconnected plateaus. The artificial swamp pool seemed to serve as perennial source of water supply for all purposes.

Map 4: Showing *Bichhikri, Moring-Morong and Dikisir* (Sat. imagery downloaded from Google earth)

5.1: The Excavation Process

The excavation was conducted for two important reasons (a) No archaeologically oriented excavation was being conducted at *Bichhikri*. This is for the first time unearthing artefacts from the contexts of archaeological stratigraphy. (b) To have a coherent picture of the stratigraphic chronology of the site i.e., the relative date of activity between one context and another.
The discovery of a huge number of pottery remains via excavation in association with other important archaeological features such as rampart, megaliths and water tank provide a great significant for the study of archaeological culture of the region. Besides, abundancy of wild rice in the region particularly in Punja hills on northern frontier simply adds another important point in the subject. The main focus of the present study is limited to pottery only. The work was preliminary in nature. The results obtained from this excavation are limited. Whatever has been discovered is reported in this study. The process of the excavation may be outlined in the following manner.

Date: 7/11/2012 – 14/11/2012

Time: 9am - 4.00pm (on the first day)
Weather: Sunny, dry and windy, therefore good for excavation.
Terrain: A high degree of slope surface (about 50°) with full of trees and creepers
Personnel: Five, four labourers and one researcher
Equipments: Trowels, spades, hoes, pick axe, matchet, geological hammer, scissors, cotton string, tape measures, magnetic compass, palm bob, wooden pegs, bamboo picks, brushes (big and small), survey pole, scales (one foot and ½ foot), GARMIN GPS 72, knives, jute bags, baskets for carrying outfill, black markers, art papers, pencils, eraser, roller, magnifying glass, polythene bags, 1m square plywood for writing/drawing and others.

Decision was taken in the day prior to beginning work at the site. All site permissions had been granted from the villagers settling near the site the day before. Health and Safety procedures were reviewed. There would be two main areas of work
1) Surveying - Understanding the general setting of the site and locating the relevant area for laying down trench. The area for excavation was selected based on exposure of potsherds.
2) Digging Trench - dug 1 trench, with the areas of (200x200) cm square.
The trench was laid over the 'slope' surface.

After due deliberation it was decided to open a trench of (200 x 200) cm square lined up with the north-south direction in order to make it easy to explain the trench in a diagram.
A (60 x 80 x 100) cm triangulation method was used to get the trench square. This also ensures that the angle of the corner is 90 degrees. The 2-metre square required a diagonal measurement of 2.82 metres. The measuring and accuracy process took some time to get right, requiring constant adjustments and slope compound the problem. The four corners/angles of the trench were then marked out with string tied wooden pegs and labelled as A, B, C, D; leaving 30cm (15cm from each alternate side) as baulk. Thus the actual trench finally is reduced to (170 x 170) cm square. Further it is divided into several units measuring 34cm apart and marked alphabetically on the side opposite to each other and the other side numerically. This is to facilitate orientation and measurement of finds within the trench. Thus the entire trench made up 25 units each measuring (34 x 34) cm square. This is shown in the diagram below (Diagrams are not to scale).

Fig. 8a: Diagram showing the triangulation method to get the trench square

There were lots of special requirements needed for protection of flora as the site was full of trees and creepers but no unnecessary destruction caused. Then the real work began! The surface was too sloping approximately declining more than 45°. The first turf or sod was removed with a hoe but as the soil was loose with coarse-grained it crumbled or disintegrated into pieces. Also few potsherds were encountered right from the very top surface, so avoided using spade. Then trowel was
used instead and the soil was removed by scraping with it bit-by-bit. It was not so difficult to remove the soil with trowel as the soil was loose and friable. Potsherds encountered in this phase are fragmentary but were gathered with non-selective hand collection. The natural pieces of stones and plant remains are the other contents of this

Fig. 8b: Diagram showing the excavation plan of the trench

□ = Wooden peg

Figure 9: Lay out of the trial trench

Figure 9: Lay out of the trial trench
layer. Rootlets are numerous and disturbing which are cut with scissor and small knife. Loose soil or debris thus produced was deposited behind the trench at a distance of one meter. This would aid in restoring to site when the trench is completed. Labourers, who are constantly instructed, worked in groups in removing and depositing the loose soil with baskets but the slope made them require constant adjustment.

A number of small finds mostly pottery pieces and natural stones were collected and kept in one jute bag. These were cleaned, bagged and labeled at the next session.

As the surface was highly sloping, excavation start from the higher slope section and descend downward as it goes deeper and deeper in the upslope section maintaining the wall of the section vertical and the bottom or floor flat or horizontal. Every dig strives to maintain about 5cm deep and keep extending but due to extreme density of potsherds sometimes difficult to maintain. Artefacts and findings are collected and bagged from every after dig. Bulk of the artefacts consisted of potsherds and occasionally remains of potter’s clay and natural pieces of stone also encountered. The entire excavation work was accomplished by using the aforesaid process i.e. by scraping the soil with trowel bit by bit. The artefacts and other features are retrieved with bamboo picks and cleaned with soft brush. It stretches six days to complete the task and on the sixth day it was made a ‘cleaned trench’; relevant and prerequisite measurements were taken. The trench was backfilled on the seventh day.

5.2: The Recording Process

The recording process involves making drawings, writing descriptions and where necessary, taking photographs of what is being excavated. Because excavation proceeds through the identification of units, the recording process is done in the same way.

There are two types of unit – basic units and group units. Basic units are the smallest defined and excavated entities in the field, while group units are sets of related units. For example, the walls, floor and postholes of a building can all be grouped together as a structural unit.

Excavation trench is assigned unit numbers too, as is the spoil from an excavation. Excavation is cut and spoil is a deposit. It is important to recognize these
as units because they are equally a part of the history of the site. Moreover, section drawing is taken from trench faces and the section number will take its number from the trench number.

All units are recorded on a standard unit sheet which is a pre-printed sheet of drafting film. The record sheet is the primary field record of excavated units on site. It has two components, a graphic part and a text part:

The graphic part is for the drawing of the unit i.e. section drawing, for the case at hand. The text section has a series of pre-set boxes which need to be filled out according to prompts or as free text. The following is the recording process that has been adopted in the present excavation (According to the guidelines of MoLAS 1994, FSI 2003).

Site Code: BCK01 (BCK=Bichhikri 01)

Unit/context: For recording layer two digits number is used and for feature alpha-numeric with hyphenation is used; the units are recorded like so: 01, 02, F-1, 03 and 04.

Group: No group entity encountered

Type: It is a context or unit type whether the given unit is deposit or cut. Used the context Number and specified i.e. F-1=Feature, a natural log of wood, and 03=layer, cultural deposit.

Description: Comprises the basic information in which the physical qualities of the unit such as its dimensions, form and material components are recorded by taking into account the following parameters.

1. Compaction: This describes the strength or hardness of the deposit and approximate scale was used when a lump is squeezed in the hand: firm when resistant to pressure, soft when easily squeezed but holds together or friable when easily squeezed and crumbles.

2. Colour: This describes the main colour of the deposit and usually consists of two parts: the principal colour (e.g. grey or brown) and a tonal qualifier (e.g. light or dark). In some cases, a Munsell Chart was preferred.

3. Composition: This describes the approximate size of the particles in a soil; most deposits are however usually a combination of constituent, e.g. silty clay or sandy silt: Sand is characterised by a gritty feel and loose texture, Silt is
characterised by a silky feel, Clay is characterised by strength, stickiness and plasticity.

4. Inclusions: Any inclusions are usually noted in terms of their frequency, size and shape: Frequency expressed as occasional, moderate or frequent, Size estimated in cm or mm, Shape described as angular or rounded.

5. Thickness/Extent: This describes the dimensions of the deposit.

6. Boundary: This describes how clear or sharp the edges were or the boundary with the next/adjacent deposit or how abruptly the change is between them. Sharp, the edge is very distinct and the change occurs over a distance of <10mm Gradual, the edge is more diffuse and the change occurs over a distance of 10-50mm Unclear, the edge is not clear and the change occurs over a distance of >50mm

7. Homogeneity: This describes how homogeneous the deposit is; Uniform when the deposit is similar all over, Mottled when the deposit is variable but evenly so all over and composed of different patches of Material or Lensed when the deposit has internal small layers (lenses), or discrete pockets/patches of other material.

8. Disturbance: This describes whether the deposit has been disturbed in any way, either by human action or natural processes.

Interpretation: Describe in a few words what the researcher thinks the unit is. Minimally what the unit is made of (e.g. turf/humus) and how it came to be there (e.g. colluvial or dump).

Tephra: State of the relationship of any tephra to the unit – i.e. below it, above it, or incorporated into it. The measurements of the Unit were taken from the upper most limits marked as [00] and descend downward to the bottom most limits with every lower limit of the unit being put the figure thus obtained.

Matrix: Components of the deposits
Finds: artefacts and other associated objects
Method of Excavation: Manually i.e., excavated by hand
Section (from AB facing CD) was drawn without scale to illustrate stratigraphic sequence. Clear and major boundary is marked by a bold, continuous
Photographs, being a much more strategic record of a site, have been used considerately to photograph every unit, even though usually very hard to ‘capture’ the unit in an informative manner. Nevertheless, special care has been taken to capture the subject matter - such as large areas, working shots or special features.

5.3: Stratigraphy and the Matrix

The basic principle to understanding any archaeological site is that of stratigraphy or stratigraphic sequence. The stratigraphic sequence is the accumulated layers of occupation which represent actions in the past (see Lucas 2003). An archaeological site is conventionally seen as being composed of any number of stratigraphic units or contexts, which are characterised by discrete differences in the material matrix of a site. Most units found on a site will be one of two basic types: deposits (units which are additive or positive) and cuts (units which are subtractive or negative). Each discretely defined unit in the field is assigned a unique number (unit number) and excavated and recorded separately from any other unit. Critical in this process is the identification of the stratigraphic relationship between one unit and any other; there are only three possible relationships between any two units:

Later than/above
Earlier than/below
Equal to/same as

For example, if one layer lies above another, it is said to be later than it, while if it lies below, earlier. If two layers found in two separate trenches or excavation areas are later found to join up and therefore be the same, they are said to be equal to each other. The relationships between units are expressed in the form of a diagram known as the Harris Matrix (after its creator) or Matrix for short (data derived from MoLAS 1994). The stratigraphic sequence of the present excavation will try to illustrate through this matrix system.

In the excavation under study four divisible stratigraphic sequences have been recognised. A total depth of 120cm with a (170 x 170) cm square trench (see above)
was disinterred and encountered a thick cultural/occupational layer exclusively represented by potsherds of fair antiquity. A silver-lines distinction within this cultural layer has been determined based on variation of depositional matrix of the context that resulted four distinguishable layers. These demarcatory layers have been determined from the northern section (A-B) that faces southern section (C-D) of the trench (see fig. 10). A detail layer by layer description and examination of the same has been made in the following pattern.

Layer-1: This is the topmost layer and classified as top soil/humus and is a recent formation. The thickness of the layer is not uniform throughout the section but on an average it gives 00-10cm below surface (BS). The colour of the layer/soil is dark grey but it tends to vary from the top to downward limit whereas the upper part show dark-grey (oxidised on exposure to air) but the lower limit exhibits brownish-grey soil (reduced). The soil is loose i.e., can be excavated with trowel, and includes clays, silts, coarse sands and organic materials. Can be easily squeezed and crumbles but can hold together on wet but cannot bend in U-shape. The upper and lower limits, however, gradually merged with each other without forming any line of demarcation.

On the surface just a few inches depth were found concentrations of potsherds which look like sherd sheets (see fig. 12.a). The potsherds were, however, too fragmentary. The layer has been constantly reworked due to colluvial action as the deposits were unsorted. Some angular sandstone flakes have been found occasionally in this layer in addition to potsherds and charcoal from recent time. They were gathered by non-selective hand collection and bagged and labelled.

Layer-2: This layer content high implements concentration. The lower limit of the layer is 10-45cm BS (though the thickness is not uniformed throughout the section) and made up of silty-sand clay with reddish light brown colour. The soil is loose as the soil of the above layer; not too hard to excavate with trowel and bamboo picks. It gets crumbled when squeezed but gains its plasticity, which can be rolled in any shape when in wet. The cultural objects consist only of potsherds which are too fragmentary and ill-sorted in its depositional orientation. The nature of the artefacts and ecofacts’ formation, indicate that the layer was a secondary deposition. Many of the artefacts got worn or rolled and patches of sands depositions were occasionally encountered which are suggestive of the colluvial action. The materials of the deposit were brought down from upslope/upper reaches during heavy rainfall and got
obstructed from its normal flow downward thus accumulated. The artefacts were collected by selective hand collection and bagged and labelled it.

Feature F-1: This is a log of wood which has putrefied and formed clump of *termitarium soil*, the colour being reddish brown. It has been marked as F-1. This feature demarcates between Layer-2 and Layer-3 below. The wood lied horizontally from west to east covering the entire section A-B (north). It consists of two parts; stump which orients west of the section and branch extending eastward of the trench. The upper and lower limit of the feature is 45-62cm BS.

Certain attributes of the feature are
1. Length of the stump: 58cm and its breadth 46cm
2. Length of the branch: 112cm and its breadth 20cm

The wood extends beyond the edge limit of the trench and obstructs the normal flow of the materials suspended in water during heavy downpour.

Layer-3: This is the *in situ* cultural/occupational layer. The average thickness of the layer is 62-106cm BS. The colour of the soil is reddish brown with silty sands. The bulk of the artefacts is potsherds, and few remains of potter’s clay, other burn clay and occasionally charcoal. Incredible density of potsherds is encountered in this layer. The depositional process of the artefacts seemed to have taken place in a quick succession. Because the potsherds were laid in loosely mantled one after the other and there frequently exist a spatial void in between one sherd to another in which no fill is reached/completed. In this heavily thick mantle of artefacts/stratigraphy, little soil/clay had deposited except the products of micro-organic action like cast etc. that partially filled in the void. Besides, individual potsherd can pull out of the context with facility. Due to these phenomena it encourages one to think as dumping ground. Potsherds with attribute include potsherds with rim, with base, with necked, body sherds and indeterminate. All the potsherds were unearthed from the context indiscriminately by non-selective hand collection and weighted which gave 165kg (without cleaning) from a single layer collection. Later on they have selectively been discriminated on the basis of the degree of relevancy for analysis/bearing an idiosyncratic quality of the sherds. They were discretely bagged and labelled.

Layer-4: This is a compact coarse grain sedimentary layer with reddish brown colour and free from artefacts. The soil was firm as it was hard to excavate with trowel and bamboo picks. It has extended the excavation to the thickness of upto 106-
120cm BS. Only a few charcoals have been recovered in the upper part of 4-5 cm and below that no any material was encountered. This layer was formed prior to the occupation of the site and can be considered as the original natural layer.

Table 13: Showing different units encountered in the trench with its thickness, physical quality and finds

<table>
<thead>
<tr>
<th>Units#</th>
<th>Thickness (cm)</th>
<th>Physical quality of the Unit</th>
<th>Finds</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>00-10 BS</td>
<td>Top soil/humus with grey in colour</td>
<td>Few tiny fragments of potsherds</td>
</tr>
<tr>
<td>02</td>
<td>10-45 BS</td>
<td>Silty-sand clay with reddish light brown colour</td>
<td>Potsherds with fragmentation</td>
</tr>
<tr>
<td>F-1</td>
<td>45-62 BS</td>
<td>Termitearium-like soil with reddish brown colour</td>
<td>Free from artefacts with reddish brown soil</td>
</tr>
<tr>
<td>03</td>
<td>62-106 BS</td>
<td>Silty sands clay with reddish brown colour</td>
<td>Potsherds, potter’s clay, burnt clay, natural pieces of stone and charcoals</td>
</tr>
<tr>
<td>04</td>
<td>106-120 BS</td>
<td>Compact coarse grain sedimentary layer with reddish brown colour</td>
<td>Free from artefacts</td>
</tr>
</tbody>
</table>

The stratigraphic sequence of the trench has been illustrated in a diagrammatic presentation below. This sequence has been considered from northern section (A-B) that faces southern section (C-D) of the trench (ABCD). All explanations of the trench are based on the phenomena observed from this section. Below is the diagram illustrating the stratigraphic sequence of the trench.

In the diagram shown, the top soil/humus layer [01] is stratigraphically the most recent or latest. The secondary/subsoil layer [02] is later than the Feature [F-1] which in turn is later than the Cultural Layer [03] (see Fig.11a). At this point it is, however, noteworthy that a physical relationship between any two units is not necessarily the same as a stratigraphic relationship; one unit may lie over two units, but of those two, one is yet earlier than the other so the physical relationship cannot always be the same as the stratigraphic one.

Thus in the illustrated diagram, a turf/humus horizon [01] may lie over all units, but because Layer [02] lies over the Feature [F-1], and the Feature lies over Layer [03], it doesn’t meant that [F-1] is earlier than [02], thus the physical
relationship between the Layer [02] and Layer [03] is said to be stratigraphically redundant because they are presumed to be contemporary (see Fig. 11.b).

Fig. 10: Diagram showing the successive stratigraphic sequence from the Northern section (A-B) of the trench ABCD (relative chronology)

01: Top soil/humus
02: Secondary deposition with implements concentration
F-1: Feature, a clump of *termitarium soil* (originally a log of wood)
03: The *in situ* cultural/occupational layer
04: Original natural layer

The Natural soil [04] was there before man appears on the site, and then the thick layer [03] is laid down, due to man occupation with dense artefacts in it, then later, a wood [F-1] probably a natural log is fell over it which starts to obstruct the flow of colluvium eventually exert pressure to down layer. After this, time passes and layer [02] builds up over the site due to the accumulation of suspended materials during heavy downpour. This process continues to build up with a gradually lesser degree of artefacts and eventually, the topsoil [01] covers everything.
Figure 11a: Layers of the trench ABCD from Northern section (A-B) facing southern section (C-D)

Figure 11b: The order in which events have occurred in the site illustrates in this Harris matrix

118
5. 4: Samples and Finds

Samples and finds are those parts of the unit which have been retained for further analysis and interpretation. The remainder of the unit is classed as spoil and is discarded. Finds are any object which has been retrieved, including stone and slag as well as artefacts and all are recorded in the same index. These finds were kept in the course of excavation, either in a bag or a tray and when the unit is finished, were labelled and recorded. A total of 500 potsherds bearing rim, base, and any other characters, were aggregated including charcoal and potter’s clay.

Samples of clay were taken from every unit to conduct petrographic analysis in order to corroborate finds to see if potteries are traded or locally produced. Not every unit will need to be sampled but it has been done and properly labelled and recorded.

Figure 12: Showing encounterance of artefacts in the trench at different depth