LIST OF TABLES

1.1 Various adductors along with their most widely occurring shape and size of the cavities. 11
1.2 Applications of cyclodextrins in pharmaceutical sciences. 18
1.3 Examples of marketed drug formulations in complexed form with cyclodextrins. 20
3.1 Interatomic distances (Å) in different forms of urea 76
3.2 Minimum carbon backbone with substituents allowing urea inclusion compound formation 82
4.1 Prediction of adductability of branched aliphatic compounds in urea using proposed topological models in the training set. 104
4.2 Topological models for adductability of branched aliphatic compounds in urea using training set 106
4.3 Cross-validation of the proposed topological models using test set 107
4.4 Cross-validation of proposed models for prediction of adductability in urea using independent test set. 109
4.5 Relationship between topological descriptors and adductability of various cyclic organic compounds in urea. 111
4.6 Topological models for adductability of substituted cyclic organic compounds in urea 112
5.1 Characteristics of low dose- drugs (having dose < 100 mg) confirming to the optimal steric requirements 116
5.2 Various HPLC methods employed for estimation of Enalapril maleate. 133
6.1 IR frequencies of both tetragonal and hexagonal urea structure 162
7.1 Increase in temperature following addition of oleic acid to methanolic solution of urea 189
7.2 Calorimetric analysis of urea-amiloride hydrochloride inclusion compounds. 192
7.3 Preparation of different urea co-inclusion compounds of amiloride hydrochloride containing varying proportions of RAE and drug. 193
7.4 Calorimetric analysis of urea – enalapril maleate inclusion compounds. 195
7.5 Preparation of different urea co-inclusion compounds of enalapril maleate containing varying proportions of RAE and drug. 196
7.6 Calorimetric analysis of urea inclusion compounds of glipizide. 197
7.7 Preparation of different urea co-inclusion compounds of glipizide containing varying proportions of RAE and drug. 198
7.8 Calorimetric analysis of urea inclusion compounds of cis-RA. 200
7.9 Preparation of different urea co-inclusion compounds of cis-RA containing varying proportions of RAE and drug. 201
7.10 Calorimetric analysis of urea inclusion compounds of nicorandil. 202
7.11 Preparation of different urea co-inclusion compounds of nicorandil containing varying proportions of RAE and drug. 203
7.12 Heat of decomposition of urea inclusion compounds of amiloride hydrochloride containing varying proportions of RAE and drug. 205
7.13 Heat of decomposition of urea inclusion compounds of enalapril maleate containing varying proportions of RAE and drug. 207
7.14 Heat of decomposition of urea inclusion compounds of glipizide containing varying proportions of RAE and drug. 209
7.15 Heat of decomposition of urea inclusion compounds of cis-RA containing varying proportions of RAE and drug. 211
7.16 Heat of decomposition of urea inclusion compounds of nicorandil containing varying proportions of RAE and drug. 213
8.1 Heat of decomposition ΔH of urea inclusion compounds using topological models. 221
9.1 Dissolution profile of amiloride hydrochloride and its urea co-inclusion compounds. 230
9.2 DP_{10}, DE_{10} and DE_{60} parameters for amiloride hydrochloride and its urea co-inclusion compounds. 230
9.3 Dissolution profile of enalapril maleate and its urea co-inclusion compounds. 233
9.4 DE₅, DP₅ and DE₃₀ parameters for enalapril maleate and its urea co-inclusion compounds.

9.5 Dissolution data for glipizide and its urea co-inclusion compounds.

9.6 DP₅, DE₅ and DE₆₀ parameters for glipizide and its urea co-inclusion compounds.

9.7 Dissolution data for cis-RA and its urea co-inclusion compounds.

9.8 DE₅ and DE₆₀ parameters for cis-RA and its urea co-inclusion compounds.

10.1 Content uniformity for different urea co-inclusion compounds of amiloride hydrochloride containing varying proportion of RAE and drug.

10.2 Content uniformity for different urea co-inclusion compounds of enalapril maleate containing varying proportion of RAE and drug.

10.3 Content uniformity for different urea co-inclusion compounds of glipizide containing varying proportion of RAE and drug.

10.4 Content uniformity for different urea co-inclusion compounds of cis-RA containing varying proportion of RAE and drug.

10.5 Content uniformity for different urea co-inclusion compounds of nicorandil containing varying proportion of RAE and drug.

11.1 Representative routes of photodegradation of drugs

11.2 Photodegradation products the percentage area for degradation peaks after cis-RA solution and solid samples have been exposed to light and air for a period of 4 and 8 weeks respectively.

11.3 Different kinetic equations used to describe decomposition in solid state, and the fit for the equation for photodecomposition profile of Cis-RA and its urea co-inclusion compound.

12.1 Moisture uptake by urea, urea –oleic acid inclusion compounds and urea co-inclusion compounds of nicorandil.

12.2 Percentage of Nicorandil left intact when the drug and its urea co-inclusion compounds were exposed to an atmosphere of 60% RH at 30 °C