LIST OF FIGURES

1.1 Comparison between molecular and supramolecular chemistry. 2
1.2 Different types of host lattices which form inclusion compounds. 6
1.3 Principle of molecular separation by host-guest complexation. 7
1.4 Helical structures in biology (a) coiled structure of DNA (b) the most designable distinct four helix folds of α-helical proteins. 13
1.5 The structure of cyclohexane-thiourea inclusion compound. 15
1.6 Amylose inclusion compounds with iodine. 16
1.7 Tetragonal structure of pure urea. 23
1.8 A projection of hexagonal plane of urea-alkane molecules. 24
1.9 Preparation of urea based co-inclusion compounds of NNAE drugs. 26
3.1 Crystal structure of urea at room temperature. 72
3.2 Cross section of the urea-n-hydrocarbon inclusion compound. 75
3.3 Arrangement of hydrogen bonding in urea-n-hydrocarbon complexes. 75
3.4 Channel structure of urea adduct. 76
3.5 Various representations of urea channels. 77
3.6 Minimum diameter of the urea host channels as a function of position along the channel axis. 77
3.7 Cross section of the cavity in the urea channel compared with the size of benzene, n-octane, 3-methylpentane and 2, 2, 4-trimethylpentane. 78
3.8 Step growth mechanism proposed for urea/ketone inclusion compounds. 79
3.9 Space-filling drawing of a hexagonal channel in the urea n-hexadecane clathrate determined by X-ray diffraction. 79
3.10 Optical micrographs of crystals of hexadecane/urea inclusion compounds. 83
3.11 Schematic two-dimensional representation of a urea inclusion compound viewed perpendicular to the tunnel axis. 84
3.12 The hexadecane-urea inclusion compounds at ambient temperature showing nine complete tunnels with van der Waals radii, viewed along the tunnel axis. 84
3.13 Low temperature phase transition for urea inclusion compounds. 86
3.14 Both enantiomers of urea molecules as helical ribbons in inclusion compounds.

3.15 Schematic two-dimensional representation of a urea inclusion compound viewed perpendicular to the tunnel axis, indicating incorporation of two guest moieties G$_1$ and G$_2$.

4.1 Hexagonal urea tunnel along with accommodated alkane guests.

4.2 Calculation of values of molecular connectivity index (χ), Wiener index (W) and eccentric connectivity index (ξ_e) for three isomers of octane using hydrogen suppressed structure.

4.3 Scatter plot between the values of Wiener's index and Molecular connectivity index for cyclic organic compounds.

4.4 Scatter plot between the values of Eccentric connectivity index and Molecular connectivity index for cyclic organic compounds.

4.5 Scatter plot between the values of Eccentric Connectivity Index and Wiener's Index.

5.1 Calibration curve for amiloride hydrochloride.

5.2 Representative HPLC chromatogram for enalapril maleate.

5.3 Calibration curve for enalapril maleate using HPLC method.

5.4 Standard curve for GLP in phosphate buffer 7.4.

5.5 Representative HPLC chromatogram of cis-RA.

5.6 Calibration curve for estimation of cis-RA using HPLC method.

5.7 Calibration curve used for estimation of nicorandil.

6.1 Orientation of urea molecules in the pure urea and urea-hydrocarbon complex crystals.

6.2 Diagrammatic representation of infrared spectra of pure urea and urea-cetane complex crystals.

6.3 IR spectra of urea and oleic acid.

6.4 Schematic of a differential scanning calorimeter.

6.5 DSC thermogram for pure urea.

6.6 Figure depicting Bragg' law.

6.7 IR spectra of amiloride hydrochloride and urea inclusion compound.
6.8 DSC thermogram of amiloride hydrochloride and urea inclusion compound.
6.9 X-Ray diffractogram of amiloride hydrochloride and urea inclusion compound.
6.10 IR spectra of enalapril maleate and urea inclusion compounds.
6.11 DSC thermograms of enalapril maleate and urea inclusion compounds.
6.12 X-Ray diffractogram of urea, enalapril maleate and urea inclusion compounds.
6.13 IR spectra of glipizide and its urea inclusion compounds.
6.14 DSC thermograms of glipizide and its urea inclusion compounds.
6.15 X-Ray diffractogram of glipizide and its urea inclusion compounds.
6.16 IR spectra for cis-RA and urea inclusion compound UIOA.
6.17 DSC thermograms of pure cis-RA and urea inclusion compound UIOA.
6.18 X-Ray diffractogram of cis-RA, urea and urea inclusion compound.
6.19 IR spectra for nicorandil and its urea inclusion compounds.
6.20 DSC thermogram of nicorandil and its urea inclusion compounds.
6.21 X-Ray diffractogram of pure nicorandil and urea inclusion compounds.
7.1 Increase in temperature following incremental addition of oleic acid to methanolic solution of urea.
7.2 Increase in temperature following addition of successive increments of RAE to methanolic solution of urea and amiloride hydrochloride.
7.3 Increase in temperature following addition of successive increments of RAE to methanolic solution of urea and enalapril maleate.
7.4 Increase in temperature following addition of successive increments of RAE to methanolic solution of urea and glipizide.
7.5 Increase in temperature following addition of successive increments of RAE to methanolic solution of urea and cis-RA.
7.6 Increase in temperature following addition of successive increments of RAE to methanolic solution of urea and nicorandil.
7.7 DSC thermograms of amiloride hydrochloride-RAE-Urea co-inclusion compounds containing varying proportions of drug and RAE.
7.8 Plot showing change in heat of decomposition for different RAE-AH-urea inclusion compounds with varying proportion of RAE and drug.

7.9 DSC thermograms of enalapril maleate-RAE-urea co-inclusion compounds containing varying proportions of drug and RAE.

7.10 Plot showing change in heat of decomposition for different RAE-enalapril maleate-urea inclusion compounds with varying proportion of RAE and drug.

7.11 DSC thermograms of glipizide-RAE-Urea co-inclusion compounds containing varying proportions of drug and RAE.

7.12 Plot showing change in heat of decomposition for different RAE-glipizide urea inclusion compounds with varying proportion of RAE and glipizide.

7.13 DSC thermograms of RAE-cis-RA -urea co-inclusion compounds containing varying proportions of drug and RAE.

7.14 Plot showing change in heat of decomposition for different RAE- cis-RA urea inclusion compounds with varying proportion of RAE and drug.

7.15 DSC thermograms of RAE-nicorandil-urea co-inclusion compounds containing varying proportions of RAE and nicorandil.

7.16 Plot showing change in heat of decomposition for different RAE-nicorandil inclusion compounds with varying proportion of RAE and drug.

8.1 Calculation of values of topological indices for three isomers of nonane using hydrogen suppressed molecular structure.

8.2 Scatter plots between the reported and predicted heat of decomposition of urea inclusion compounds.

9.1 Application of in-vitro dissolution studies.

9.2 BCS : Fraction absorbed as a function of solubility / permeability.

9.3 Dissolution profiles of amiloride hydrochloride and its urea inclusion compounds.

9.4 Dissolution profiles of enalapril maleate and its urea inclusion compounds.
9.5 Dissolution profiles of glipizide and its urea inclusion compounds. 236
9.6 Dissolution profiles of cis-RA and its urea inclusion compounds. 239
11.1 Pharmaceutical product photosensitivity classification system. 251
11.2 Photostability study chamber as per Q1B guidelines. 252
11.3 Various photodegradation products of cis-retinoic acid. 255
11.4 Percentage of cis-RA remained undecomposed in sample of pure drug and urea inclusion compound upon photoexposure. 257
11.5 Fit for 1st order rate equation to photodecomposition profile of cis-RA and its urea inclusion compound. 258
11.6 Fit for 2nd order rate equation to photodecomposition profile of cis-RA and its urea inclusion compound. 259
11.7 Fit for unimolecular decay to photodecomposition profile of cis-RA and its urea inclusion compound. 259
11.8 Fit for Prout-Tompkin equation to photodecomposition profile of cis-RA and its urea inclusion compound. 260
11.9 Fit for the Modified Prout-Tompkin equation of cis-RA and its urea inclusion compound. 260
12.1 Water adsorption and deliquescence of water soluble solid particle. 264
12.2 Representative HPLC chromatogram of nicorandil. 268
12.3 Calibration curve for estimation of nicorandil by HPLC method. 269
12.4 Moisture uptake by urea at different relative humidity. 271
12.5 Moisture uptake by urea co-inclusion compounds of nicorandil at different relative humidity. 271
12.6 Moisture uptake by urea inclusion compounds of oleic acid at different relative humidity. 272
12.7 Plot showing percentage of Nicorandil remained intact in samples exposed to 60% RH at 30 °C. 272