LIST OF TABLES

Table 3.1 Specifications of filament yams
Table 3.2 Specifications of staple fibres
Table 3.3 Actual and coded values of process parameters
Table 3.4 Box Behnken design for the process parameters used for the study
Table 3.5 Blends of filament yams used for preparation of textured yarn samples
Table 4.1 Filament yarn properties
Table 4.2(a) Trial 1: Selection of range of parameters for polyester filament yams
Table 4.2(b) Trial 2: Selection of range of parameters for viscose filament yams
Table 4.2(c) Trial 3: Selection of range of parameters for 50/50 P/V filament yams
Table 4.3 Yarn properties for 0/6 blend
Table 4.4 Yarn properties for 1/5 blend
Table 4.5 Yarn properties for 2/4 blend
Table 4.6 Yarn properties for 3/3 blend
Table 4.7 Yarn properties for 4/2 blend
Table 4.8 Yarn properties for 5/1 blend
Table 4.9 Yarn properties for 6/0 blend
Table 4.10 Significance test for regression model of 100% viscose air-jet textured yarn
Table 4.11 Significance test for regression model of 16.67/83.33 P/V blended air-jet textured yarn
Table 4.12 Significance test for regression model of 33.33/66.67 P/V blended air-jet textured yarn
Table 4.13 Significance test for regression model of 50/50 P/V blended air-jet textured yarn
Table 4.14 Significance test for regression model of 66.67/33.33 P/V blended air-jet textured yarn
Table 4.15 Significance test for regression model of 83.33/16.67 P/V blended air-jet textured yarn
Table 4.16 Significance test for regression model of 100% polyester air-jet textured yarn
Table 4.17 Optimum process parameters to be used for producing 100% viscose air-jet textured yarns
Table 4.18 Optimum process parameters to be used for producing 16.67/83.33 P/V blended air-jet textured yarns
Table 4.19 Optimum process parameters to be used for producing 33.33/66.67 P/V blended air-jet textured yams

Table 4.20 Optimum process parameters to be used for producing 50/50 P/V blended air-jet textured yams

Table 4.21 Optimum process parameters to be used for producing 66.67/33.33 P/V blended air-jet textured yams

Table 4.22 Optimum process parameters to be used for producing 83.33/16.67 P/V blended air-jet textured yams

Table 4.23 Optimum process parameters to be used for producing 100% polyester air-jet textured yams

Table 5.1 Values of instability, physical bulk, tenacity and denier of textured yams produced under optimum process conditions:

Table 5.2 Properties of ring spun yarns to be used as weft.

Table 5.3 Fabric sett (after relaxation), sample identification and diameter of yarn in fabric

Table 5.4 Comfort properties of fabrics

Table 5.5 Durability properties of fabrics

Table 5.6 Physical, handle related mechanical and surface properties of fabrics

Table 5.7 Equations for prediction of air permeability of textured and ring-spun yarn fabrics and their significance

Table 5.8 Hairiness values of P/V blended ring-spun yarns used as weft

Table 5.9 Fabric cover and porosity of ring-spun and air-jet textured yarn fabrics

Table 5.10 Equations for prediction of thermal resistance of textured and ring-spun yarn fabrics and their significance

Table 5.11 Equations for prediction of normalized thermal resistance of textured and ring-spun yarn fabrics and their significance

Table 5.12 Equations for prediction of water vapour permeability of textured and ring-spun yarn fabrics and their significance

Table 5.13 Equations for prediction of water vapour resistance of textured and ring-spun yarn fabrics and their significance

Table 5.14 Equations for prediction of horizontal wicking of textured and ring-spun yarn fabrics and their significance

Table 5.15 Equations for prediction of pilling propensity of textured and ring-spun yarn fabrics and their significance

Table 5.16 Equations for prediction of breaking load of textured and ring-spun yarn fabrics and their significance

Table 5.17 Equations for prediction of elongation at break of textured and ring-spun yarn fabrics and their significance
Table 5.18 Equations for prediction of abrasion resistance (thickness reduction) of textured and ring-spun yarn fabrics and their significance

Table 5.19 Equations for prediction of abrasion resistance (weight reduction) of textured and ring-spun yarn fabrics and their significance

Table 5.20 Equations for prediction of crease recovery behaviour of textured and ring-spun yarn fabrics and their significance

Table 5.21 Equations for prediction of shear rigidity of textured and ring-spun yarn fabrics and their significance

Table 5.22 Equations for prediction of bending rigidity of textured and ring-spun yarn fabrics and their significance

Table 5.23 Equations for prediction of extensibility of textured and ring-spun yarn fabrics and their significance

Table 5.24 Actual and assigned values of comfort and durability properties of fabrics produced from 100% viscose ring-spun yarn and air-jet textured yarn weft.

Table 5.25 Actual and assigned values of comfort and durability properties of fabrics produced from 16.67/83.33 P/V ring-spun yarn and air-jet textured yarn weft.

Table 5.26 Actual and assigned values of comfort and durability properties of fabrics produced from 33.33/66.67 P/V ring-spun yarn and air-jet textured yarn weft.

Table 5.27 Actual and assigned values of comfort and durability properties of fabrics produced from 50/50 P/V ring-spun yarn and air-jet textured yarn weft.

Table 5.28 Actual and assigned values of comfort and durability properties of fabrics produced from 66.67/33.33 P/V ring-spun yarn and air-jet textured yarn weft.

Table 5.29 Actual and assigned values of comfort and durability properties of fabrics produced from 83.33/16.67 P/V ring-spun yarn and air-jet textured yarn weft.

Table 5.30 Actual and assigned values of comfort and durability properties of fabrics produced from 100% polyester ring-spun yarn and air-jet textured yarn weft.