LIST OF FIGURES

Fig. 2.1 Process flow sequence of air-jet texturing
Fig. 2.2 Mechanism of loop formation according to Acar et al. [3]
Fig. 2.3 Mechanism of loop formation showing behavior of filaments inside the nozzle channel. The image also shows the plane of air inlet [6].
Fig. 2.4 Behavior of filaments at the plane of air inlet in dry and wet texturing condition [6]
Fig. 2.5 DuPont's stability test method [24]
Fig. 3.1 Sequence of machines used for preparation of ring-spun yarns from fibres.
Fig. 3.2 Alambeta thermal insulation tester
Fig. 3.3 Permetest apparatus
Fig. 3.4 Horizontal wicking apparatus
Fig. 4.1 Effect of texturing speed on predicted bulk of P/V blended yarns at 8.5 bar air pressure and 24% overfeed
Fig. 4.2 Effect of air pressure on predicted bulk of P/V blended yarns at 400 m/min texturing speed and 24% overfeed
Fig. 4.3 Effect of overfeed on predicted bulk of P/V blended yarns at 8.5 bar air pressure and 400 m/min texturing speed
Fig. 4.4 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn physical bulk of 100% viscose textured yarn.
Fig. 4.5 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn physical bulk of 16.67/83.33 P/V blended textured yarn.
Fig. 4.6 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn physical bulk of 33.33/66.67 P/V blended textured yarn.
Fig. 4.7 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn physical bulk of 50/50 P/V blended textured yarn.
Fig. 4.8 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air
pressure and machine speed at constant overfeed of 24% on yarn physical bulk of 66.67/33.33 P/V blended textured yarn.

Fig. 4.9 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn physical bulk of 83.33/16.67 P/V blended textured yarn.

Fig. 4.10 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn physical bulk of 100% polyester textured yarn.

Fig. 4.11 Effect of texturing speed on predicted instability of P/V blended yarns at 8.5 bar air pressure and 24% overfeed

Fig. 4.12 Effect of air pressure on predicted instability of P/V blended yarns at 400 m/min texturing speed and 24% overfeed

Fig. 4.13 Effect of overfeed on predicted instability of P/V blended yarns at 8.5 bar air pressure and 400 m/min texturing speed

Fig. 4.14 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn instability of 100% viscose textured yarn.

Fig. 4.15 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn instability of 16.67/83.33 P/V blended textured yarn.

Fig. 4.16 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn instability of 33.33/66.67 P/V blended textured yarn.

Fig. 4.17 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn instability of 50/50 P/V blended textured yarn.

Fig. 4.18 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn instability of 66.67/33.33 P/V blended textured yarn.

Fig. 4.19 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and
Fig. 4.20 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn instability of 83.33/16.67 P/V blended textured yarn.

Fig. 4.21 Effect of texturing speed on predicted tenacity of P/V blended yarns at 8.5 bar air pressure and 24% overfeed.

Fig. 4.22 Effect of air pressure on predicted tenacity of P/V blended yarns at 400 m/min texturing speed and 24% overfeed.

Fig. 4.23 Effect of overfeed on predicted tenacity of P/V blended yarns at 8.5 bar air pressure and 400 m/min texturing speed.

Fig. 4.24 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn tenacity of 100% viscose textured yarn.

Fig. 4.25 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn tenacity of 16.67/83.33 P/V blended textured yarn.

Fig. 4.26 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn tenacity of 33.33/66.67 P/V blended textured yarn.

Fig. 4.27 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn tenacity of 50/50 P/V blended textured yarn.

Fig. 4.28 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn tenacity of 66.67/33.33 P/V blended textured yarn.

Fig. 4.29 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and c) air pressure and machine speed at constant overfeed of 24% on yarn tenacity of 83.33/16.67 P/V blended textured yarn.

Fig. 4.30 Interaction effect of a) air pressure and overfeed at constant machine speed of 400 m/min b) overfeed and machine speed at constant air pressure of 8.5 bar and
c) air pressure and machine speed at constant overfeed of 24 % on yarn tenacity of 100 % polyester textured yarn.

Fig. 5.1 Effect of blend percentage on air permeability of ring-spun yarn and textured yarn fabrics

Fig. 5.2 Effect of blend percentage on thermal resistivity of ring-spun yarn and textured yarn fabrics

Fig. 5.3 Effect of blend percentage on normalized thermal resistivity of ring-spun yarn and textured yarn fabrics

Fig. 5.4 Effect of blend percentage on relative water vapor permeability of ring-spun yarn and textured yarn fabrics

Fig. 5.5 Effect of blend percentage on absolute water vapor resistance of ring-spun yarn and textured yarn fabrics

Fig. 5.6 Effect of blend percentage on horizontal wicking of ring-spun yarn and textured yarn fabrics

Fig. 5.7 Effect of blend percentage on pilling of ring-spun yarn and textured yarn fabrics

Fig. 5.8 Effect of blend percentage on tensile strength of ring-spun yarn and textured yarn fabrics

Fig. 5.9 Effect of blend percentage on elongation at break of ring-spun yarn and textured yarn fabrics

Fig. 5.10 Effect of blend percentage on abrasion resistance (thickness reduction) of ring-spun yarn and textured yarn fabrics

Fig. 5.11 Effect of blend percentage on abrasion resistance (weight reduction) of ring-spun yarn and textured yarn fabrics

Fig. 5.12 Effect of blend percentage on crease recovery of ring-spun yarn and textured yarn fabrics

Fig. 5.13 Effect of blend percentage on shear rigidity of ring-spun yarn and textured yarn fabrics

Fig. 5.14 Effect of blend percentage on bending rigidity of ring-spun yarn and textured yarn fabrics

Fig. 5.15 Effect of blend percentage on extensibility of ring-spun yarn and textured yarn fabrics

Fig. 5.16 Polar diagram for fabric properties of fabrics produced from 100% viscose ring-spun yarn and air jet textured yarn weft

Fig. 5.17 Polar diagram for fabric properties of fabrics produced from 16.66/83.37 P/V ring-spun yarn and air jet textured yarn weft

Fig. 5.18 Polar diagram for fabric properties of fabrics produced from 33.33/66.67 P/V ring-spun yarn and air jet textured yarn weft

Fig. 5.19 Polar diagram for fabric properties of fabrics produced from 50/50 P/V ring-spun yarn and air jet textured yarn weft
Fig. 5.20 Polar diagram for fabric properties of fabrics produced from 66.67/33.33 P/V ring-spun yarn and air jet textured yarn weft

Fig. 5.21 Polar diagram for fabric properties of fabrics produced from 83.33/16.67 P/V ring-spun yarn and air jet textured yarn weft

Fig. 5.22 Polar diagram for fabric properties of fabrics produced from 100% polyester ring-spun yarn and air jet textured yarn weft

Fig. 5.23 Polar diagram for fabric properties produced from P/V ring-spun yarn weft of varying blend percentage (where R1 is 100% viscose, R2 is 17/83 P/V, R3 is 33/67 P/V, R4 is 50/50 P/V, R5 is 67/33 P/V, R6 is 83/17 P/V and R7 is 100% polyester).

Fig. 5.24 Polar diagram for fabric properties produced from P/V ring-spun yarn weft of varying blend percentage (where T1 is 100% viscose, T2 is 17/83 P/V, T3 is 33/67 P/V, T4 is 50/50 P/V, T5 is 67/33 P/V, T6 is 83/17 P/V and T7 is 100% polyester).