<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1: INTRODUCTION AND OBJECTIVES</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Objectives</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2 The air-jet texturing process</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1 Mechanism of air-jet texturing</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1.1 Mechanism according to Bock and Lunenschloss</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1.2 Mechanism according to Acar, Turton and Wray</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1.3 Mechanism according to Sengupta Kothari and Shrinivasan</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1.4 Mechanism according to Dani</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 Properties of Air-jet textured Yarns</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 Test methods for air-jet textured yarns</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3.1 Bulk measurement</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3.1.1 Package density method</td>
<td>14</td>
</tr>
<tr>
<td>2.2.3.1.2 Textured yarn bulk evaluated through fabrics</td>
<td>15</td>
</tr>
<tr>
<td>2.2.3.1.3 Water uptake method</td>
<td>15</td>
</tr>
<tr>
<td>2.2.3.1.4 Image analysis method</td>
<td>16</td>
</tr>
<tr>
<td>2.2.3.1.5 Method based on optical system</td>
<td>17</td>
</tr>
<tr>
<td>2.2.3.2 Instability measurement</td>
<td>17</td>
</tr>
<tr>
<td>2.2.3.2.1 Weight hanging methods</td>
<td>18</td>
</tr>
<tr>
<td>A) DuPont’s method</td>
<td>18</td>
</tr>
<tr>
<td>B) Heberlein’s method</td>
<td>19</td>
</tr>
<tr>
<td>2.2.3.2.2 Measurement using a tensile tester</td>
<td>19</td>
</tr>
<tr>
<td>A) Wray’s method</td>
<td>19</td>
</tr>
<tr>
<td>B) Acar’s method</td>
<td>20</td>
</tr>
<tr>
<td>C) Demir’s method</td>
<td>20</td>
</tr>
<tr>
<td>2.2.3.2.3 Method based on running yarn</td>
<td>20</td>
</tr>
<tr>
<td>2.2.3.2.4 Method based on repeated loading</td>
<td>21</td>
</tr>
</tbody>
</table>
2.2.3.2.5 Method based on optical scanning 21
2.2.4 Factors influencing air-jet textured yarn properties 22
 2.2.4.1 Effect of feed material characteristics 22
 2.2.4.1.1 Effect of polymer type 22
 2.2.4.1.2 Effect of filament linear density and number of filaments 23
 2.2.4.1.3 Effect of filament cross-sectional shape 24
 2.2.4.1.4 Effect of interfilament friction 24
 2.2.4.1.5 Effect of filament modulus 25
 2.2.4.1.6 Effect of twist 25
 2.2.4.1.7 Effect of blend 26
 2.2.4.2 Effect of jet parameters 28
 2.2.4.2.1 Effect of nozzle 28
 2.2.4.2.2 Effect of impact element 29
 2.2.4.3 Effect of process parameters 30
 2.2.4.3.1 Effect of air pressure 30
 2.2.4.3.2 Effect of overfeed 31
 2.2.4.3.3 Effect of texturing speed 32
 2.2.4.3.4 Effect of stabilizing tension 33
 2.2.4.3.5 Effect of heat stabilizing 33
 2.2.4.3.6 Effect of water 34
 2.2.4.4 Process economy 36
2.3 Air-jet textured yarn fabrics 37
 2.3.1 Air-jet textured yarn vis-à-vis spun yarn fabrics 37
 2.3.2 Processing of fabric from air-jet textured yarns 37
 2.3.3 Consumer acceptance 38
2.4 Blended yarn fabrics 38
 2.4.1 Blended yarn fabrics from air-jet textured yarn 42

CHAPTER 3: EXPERIMENTAL
3.1 Raw materials 43
 3.1.1 Filament yarns 43
 3.1.2 Staple fibres 44
3.2 Preparation of textured yarn samples 44
3.3 Yarn testing
 3.3.1 Physical Bulk
 3.3.2 Instability
 3.3.3 Tensile properties
 3.3.4 Yarn denier
3.4 Optimization of texturing process parameters
 3.4.1 Determination of regression equations for prediction of yarn properties
 3.4.2 Optimization of process parameters
3.5 Final yarn preparation for fabric production
3.6 Preparation of ring spun yarns
 3.6.1 Preparation of yarns used as weft
 3.6.2 Hairiness testing
 3.6.3 Preparation of yarns used for warp
 3.6.4 Yarn diameter testing
3.7 Fabric preparation
 3.7.1 Yarn diameter measurement from fabric
3.8 Fabric tests
 3.8.1 Fabric thickness
 3.8.2 Air Permeability
 3.8.3 Thermal Insulation
 3.8.4 Water vapor permeability
 3.8.5 Wicking
 3.8.6 Pilling
 3.8.7 Strength and elongation
 3.8.8 Fabric weight
 3.8.9 Abrasion resistance
 3.8.10 Crease recovery
 3.8.11 Handle related mechanical, physical and surface properties
 3.8.12 Porosity and Fabric cover

CHAPTER 4: SELECTION OF TEXTURING PARAMETERS FOR PRODUCTION OF BLENDED AIR-JET TEXTURED YARNS
4.1 Properties of filament yarn
4.2 Trials taken to select the range of process parameters for yarn preparation 59
4.3 Properties of yarns for different blends 61
4.4 Regression equations for prediction of yarn properties of different blends 65
 4.4.1 Blend 0/6 (100% viscose) 67
 4.4.2 Blend 1/5 (16.67/83.33 P/V) 68
 4.4.3 Blend 2/4 (33.33/66.67 P/V) 69
 4.4.4 Blend 3/3 (50/50 P/V) 70
 4.4.5 Blend 4/2 (66.67/33.33 P/V) 71
 4.4.6 Blend 5/1 (83.33/16.67 P/V) 72
 4.4.7 Blend 6/0 (100% polyester) 73
4.5 Effect of blend proportion and process parameters on physical properties of air-jet textured yarns. 74
 4.5.1 Physical bulk 74
 4.5.2 Instability 85
 4.5.3 Tenacity 95
4.6 Optimum process parameters for blended air-jet textured yarns 106

CHAPTER 5: PROPERTIES OF BLENDED AIR-JET TEXTURED AND RING SPUN YARNS AND FABRICS

5.1 Properties of textured and ring spun yarns 113
5.2 Fabric parameters produced from air-jet textured and ring spun yarn 114
5.3 Properties of fabrics 114
 5.3.1 Air permeability 118
 5.3.2 Thermal resistance 120
 5.3.3 Water vapor permeability 123
 5.3.4 Wicking 126
 5.3.5 Pilling 129
 5.3.6 Fabric strength and elongation at break 130
 5.3.7 Abrasion resistance 133
 5.3.8 Crease recovery 135
 5.3.9 Handle related mechanical properties 137
5.4 Polar diagrams 143
 5.4.1 Polar diagram for properties of 100% Viscose weft yarn fabric 144
5.4.2 Polar diagram for properties of 16.67/83.33 P/V weft yarn fabric 146
5.4.3 Polar diagram for properties of 33.33/66.67 P/V weft yarn fabric 148
5.4.4 Polar diagram for properties of 50/50 P/V weft yarn fabric 150
5.4.5 Polar diagram for properties of 66.67/33.33 P/V weft yarn fabric 152
5.4.6 Polar diagram for properties of 83.33/16.67 P/V weft yarn fabric 154
5.4.7 Polar diagram for properties of 100% Polyester weft yarn fabric 156
5.4.8 Polar diagrams for ring spun yarn weft fabrics 158
5.4.9 Polar diagrams for air-jet textured yarn weft fabrics 159

CHAPTER 6: CONCLUSIONS AND SCOPE FOR FURTHER STUDY 163

BIBLIOGRAPH 166

APPENDIX 1: RESPONSE SURFACE METHODOLOGY 171

APPENDIX 2: FLOWCHART FOR C PROGRAM TO DETERMINE THE OPTIMUM PROCESS PARAMETERS WITH 3:2:1 WEIGHTAGE TO YARN INSTABILITY, PHYSICAL BULK AND TENACITY 179

APPENDIX 3: PROGRAME LISTING AND OUTPUTS FOR OPTIMIZATION OF TEXTURING PROCESS PARAMETERS 182

BIODATA 201

PUBLICATIONS 203