BIBLIOGRAPHY

Abel, F.L. and Wolf, M.B. (1973):
Increased capillary permeability of 125I-labeled albumin during experimental hemorrhagic shock.

Ackerman, N.B., Brinkley, F.E. (1968):
Comparison of effects of tissue oxygenation of hydrogen, oxygen and intravascular hydrogen peroxide.

Effect of naloxone in hemorrhagic shock.

Vascular smooth muscle and general anaesthetics.

Pathophysiology of shock.

Myocardial oxygen delivery after experimental hemorrhagic shock.

Pathophysiology of experimental lactic acidosis in dogs.

Characterization of noradrenergic control of vasopressin release by the organ-cultured rat hypothalamohypophyseal system.
Endocrinology, 111: 279-279.

Ballinger, W. F., Vollen Weider, H., Pierucci, L.,
Templeton, J. R., J. Y. (1962):
The accumulation and removal of excess
lactate in arterial blood during
hypothermia and biventricular bypass.
Surgery, 57: 738.

Baue, A. E., Wirth, M. A., Chaudhry, J. H. and
Sayeed, M. M. (1973):
Impairment of cell membrane transport
during shock and after treatment.

Baue, A. F., Chaudry, I. H., Wurth, M. A. and
Cellular alterations with shock and
ischemia.
Angiology, 25: 31-41.

Baue, A. E. (1975):
Multiple, progressive of sequential
systems failure.

Serum myocardial depressant factor
of burn shock.

Beaty, C. H. (1945):
The effect of hemorrhage on the lactate/
pyruvate ratio and arterial differences
in glucose and lactate.

Becuwkes, R. III (1971):
Efferent vascular patterns and the
early vascular tubular relations in the
dog kidney.

Beregovich, J., Bianchi, C., Rubler, E., Lomnitz,
Dose related hemodynamic and renal
effects of dopamine in congestive heart
Berne, R.M. (1964):
Regulation of coronary blood flow.

Advances in experimental medicine and
biology, vol. 9. Shock. Biochemical,
Pharmacological and Clinical aspects
(proceedings of the International
Symposium on shock held at Como, Italy.

Effect of pharmacologic coronary flow
augmentation on cardiac function in
hypotension.

Renin release after hemorrhage and
after suprarenal aortic constriction
in dogs without sodium delivery to
the macula densa.

Bohlen, H.G., Hutchins, P.M., Rapela, C.E. and
Green, H.D. (1975):
Microvascular control in the intestinal
mucosa of normal and hemorrhaged
rats.

Peripheral circulation. In Handbook
of Shock and Trauma, vol. I. Basic
Science. edited by B.M. Altura

Bond, R.F., Manley, E.S., and Green, H.D. (1967):
Cutaneous and skeletal muscle
vascular resistance to hemorrhage and
irreversible shock.

Bond, R.F., Manning, E.S., Gonzalez, N.M.,
Myocardial and skeletal muscle responses
to hemorrhage and shock during
adrenergic blockade.
Bond, R., Zepp, A., Peissner, L. and Manning, E. (1979):
Correlation between skeletal muscle free fatty acid extraction and vascular decompensation during hemorrhagic hypotension.
Lipids, 14: 842-847.

Bond, R., Peissner, L. and Manning, E. (1980):
Evidence against a reflex vasodilatation in hemorrhagic hypotension.
Experientia, 36: 80-81.

Renal changes in shock treated with levaternol.

Predictive value of serum osmolality in shock following major trauma.

Myocardial depressant factor in plasma from cats in irreversible post-oligemic shock.

Excess lactate an index of shock in human patients.
Science, 143: 1457-1459.

Assay of renin in single glomeruli.
Lancet, 2: 663-669.

The effect of acute hemorrhage in the dog and man on plasma renin concentration.
J. Physiol (Lond) 182: 649-663.

Burnie, J. (1981):
Naloxone in shock.
Lancet, 1: 942.
Cannon, W.B. (1923):

Cannon, W.B. and Bayliss, W.M. (1919):
Notes on muscle injury in relation to shock, Special reports, Medical Research Commission, No. 26, VIII, 19.

Carrier, S., Thorburn, G.D., Morchoe, C.C.O. and Barger, A.C. (1966):

Chien, S. (1967):

Clausen, G. and Tyssebohn (1974):
Clinical disorders of fluid and electrolyte metabolism. New York,

Physiological effects of high dose naloxone administration in normal adults.

High dose naloxone infusion in normals.
Dose-dependent behavioral, hormonal and physiological response.

Lactate metabolism.
Anaesthesia, 45: 661-673.

Renal hemodynamics in acute renal failure.

Cook, W. F. (1962):
Renin and the juxta glomerular apparatus.

Corcoran, A. C. and Page, I. H. (1943):
Effect of hypotension due to hemorrhage and of blood transfusion on renal function in dogs.

Cordey, E., Williams, J. H. Jr (1960):
Effect of shock and vasopressor drugs on the regional circulation of the brain, heart, kidney and liver.

Studies of circulation in clinical shock.

The anatomic and metabolic source of lactate in shock.

Intracellular sodium and potassium in vascular smooth muscle during hemorrhagic shock.

Deloyer,:
As quoted by Balinger, W.F. (1963):
General introduction in shock; In Shock, J., Suten, T., Bandila, A., Cafrita, A., Bucur and V. Candea (Eds) pp. I

Naloxone in shock.

Enkephalin modulate the responsiveness of rat atria in vitro to nor-epinephrine peptides, 3: 475-478.

Structure and biosynthesis of pro-adrenal corticotropin/endorphin and related peptides.

Science, 205: 317-318.

Naloxone treatment of endotoxin shock: Stereospecificity of physiologic and pharmacologic effects in the rat.
Opiate antagonist improves neurologic recovery after spinal injury.

Dopamine partially mediates the cardiovascular effects of naloxone after spinal injury.

Endorphins in experimental spinal injury, therapeutic effect of naloxone.

Opiate antagonist and thyrotropin-releasing hormone (1) potential role in the treatment of shock.
NADA, 252: 1177-1180.

Opiate antagonists and thyrotropin-releasing hormone. III. Potential role in the treatment of central nervous system injury.
JAMA., 252: 1452-1454.

Feuerstein, G., Chinek, C.C. and Lopin, I.J. (1981):
Effect of naloxone on the cardiovascular and sympathetic response to hypovolemic hypotension in the rat.

Intra renal distribution of blood flow in diabetes insipidus.
Role of ADH.

A circulating depressant effect following canine hemorrhagic shock.

Glenn, T.M. and Lefer, A.M. (1971a):
Significance of splanchnic proteases in the production of a toxic factor in hemorrhagic shock.

Effects of a myocardial depressant factor on isolated vascular smooth muscle.

Goldberg, L.I. (1972):
Cardiovascular and renal actions of dopamine: Potential clinical applications.

Dopamine-clinical uses of an endogenous catecholamine.

Dopamine receptors: Application in clinical cardiology.

Functional cardiac deterioration during development of hemorrhagic circulatory deficiency.

Sympathetic nerve and skeletal muscle vascular responses to hemorrhage and shock with and without cholinergic and beta adrenergic blockade in dog.

Left coronary hemodynamics during hemorrhagic hypotension and shock.

Ciba Foundation Symposium on shock.

Science, 197: 1367-1369.

Gurll, N.J., Reynolds, D.G., Vargish, T.,
Gurll, N.J. (1985):
Endorphins in endotoxin shock. In
Hinshaw, L.B. (Ed) Handbook of Endotoxin,
vol. 2, Pathophysiology of endotoxin,
Elsevier Science Publishers, Amsterdam,
pp. 299-337.

Central nervous system is involved in
the cardiovascular responses to naloxone
in canine endotoxic but not hemorrhagic
shock.

Effects of hemorrhagic shock on the
heart and circulation of intact dogs.
Circulation, 11: 623-635.

Effects of hemorrhagic shock and
treatment with hypothermia on the
potassium content and transport of single
mammalian skeletal muscle cells.

Anatomy of the interstitial tissue.

Hardway, R.M., W.H. Brune, E.P., Greever, J.W.,
Burns, and H.P. Mock (1962):
Studies on the role of intravascular
coagulation in irreversible
hemorrhagic shock.

Influence of vasoconstrictors and
vasodilators on disseminated intra-
vascular coagulation in irreversible
hemorrhagic shock.
Surg. Gynecol. Obstet., 119:
1053-1056.
Harrington, J.T., Cohen, J.J. and Jerome, P.
Kassirer (1932):
Introduction to the clinical acid-base disturbances.
Edited by Little, Brown and Company, Boston.

Effects of traumatic hypovolemic shock on renal function.

The effect of dopamine on renin release in vitro.
Endocrinology, 101: 279-283.

Hershey, S.G. (1964):
Dynamics of peripheral vascular collapse in shock.

Pharmacotherapy of circulatory shock.
Disease-A Month, XXXIII, 311-361.

Reversal of hypotension with naloxone.

Specific high affinity (H+) ethyl-ketoeyelazocine binding in rat central nervous system: Lack of evidence for K-receptors.
Regional blood flow in hemorrhagic shock.

Angiotensin II and ß-adrenergic control of the intrarenal circulation in hemorrhage.
Circ. Shock, 9: 81-94.

Vasomotor cellular and functional changes produced in kidney by brain stimulation.

Holaday, J.W. and A.I. Faden (1973):
Naloxone reversal of endotoxin hypotension suggests a role of endorphins in shock.

Holaday, J.W., Law, P.V. and Loh, H. and Li, G.H. (1979):
Adrenal steroid indirectly modulate morphine and ß-endorphin effects.

Endorphin-ópiate interactions with neuroendocrine systems. In neurochemical mechanism of opiates and endorphin.

Holaday, J.W., M.O. Hara and A.I. Faden (1981):
Hypophysectomy after cardio-respiratory variables. Central Effects of Pituitary Endorphins in Shock.
Cardiovascular effects of endogenous opiate systems.

Opiate antagonist in shock and trauma.

Endorphin involvement in the pathophysiology of shock and trauma.
Therapeutic effects of naloxone.
In: Homeostasis in injury and shock edited by Z.S. Biro, A.G.B. Kovach,
J.J. Spitzer and Stoner Akademiai Kiado Budapest, pp. 131-141.

Ultra structural changes in hemorrhagic shock: Electron microscopic study of liver, kidney and striated muscle cells in rats.

Acute oliguric renal failure in man: Evidence for preferential renal cortical ischemia.
Medicine (Baltimore) 47: 455-474.

Acute renal failure due to nephrotoxin.
Renal hypodynamic and angiographic studies in man.

Changes in pre- and post-capillary resistance in pathogenesis of hemorrhagic shock.
Horowitz, J.H. (1975):

Houck, C.R. (1951):

Howard, J.M. (1962):

Howard, J.M. (1965):

Hutchins, P.M., Bond, R.F. and Green, H.D. (1974):

Glomerular mesangial and endothelial cell swelling following temporary renal ischemia and its role in the no-reflow phenomenon.

Autoradiographic visualization of 85Kr in the normal kidney.

Keith, N.M. (1919):
Blood volume in wound shock.
Med. Res. Comm. (Great Britain) Special Report Series no. 27, IX.

Metabolism of lactate following major blood loss.
Surgery, 63: 782-787.

Effect of nor-epinephrine on plasma vasopressin concentration and renal water metabolism.

The role of PH and CO2 in the distribution of blood flow.

Integrative neural cardiovascular control.

Comparison of the receptor binding characteristics of opiate antagonists, interacting with µ and K-receptors.

Morris, E.A. (1867):
A practical treatise on shock after operations and injuries.
Hardwicke, London.

Muller, W. and Smith, L.L. (1963):
Hepatic arterial and portal venous circulatory changes following acute hemorrhage in the dog.

Effects of PH changes on O2 uptake and plasma catecholamine levels in the dog.

Renal oxygenation and lactate metabolism in hemorrhagic shock in dogs.

Influence of l-norepinephrine resistance and urine flow in hemorrhagic shock.
Surgery, 50: 115-125.

Evolution of Tri (hydroxy-methyl) aminomethane (THAM) in experimental hemorrhagic shock.

Regulation of glycogenolysis in hearts. Effects of pressure development glucose and FFA.

Renal effects of dopamine during prolonged hemorrhagic hypotension in the dog.
Circ. Shock, 7: 380-397.
Intrarenal blood flow distribution
in irreversible hemorrhagic shock
in dogs.
J. Trauma, 13: 1066-1074.

Intrarenal blood flows in carotid
sinus nerve stimulation and hemorrhage
in dogs.
Kidney Int., 8: 135-139.

Intra-renal blood flow distribution
in irreversible shock in dogs.
J. Trauma, 13: 1066-1074.

Passmore, J.C., Roseenberg, E.M., Hock, C.E. and
Effects of indomethacin on intra-
renal blood flow and medullary
osmolality in dogs.

Role of the kidney in shock: Current
views in Hand Book of Shock and Trauma,
Vol. I. Basic Science edited by B.M.
Altura et al; Raven Press, New York.

Naloxone, a long acting opiate
antagonist: Effects on analgesia in
intact animals, and an opiate
receptor binding in vitro.

Patton, M.L., Gurll, N.J., Reynolds, D.G. and
Adrenalectomy abolishes and cortisol
restores naloxone's beneficial effects
on cardiovascular function and survival in
canine hemorrhagic shock.
Circ. Shock, 10: 317-327.
Penner, A. and Bernheim, A.J. (1940):
Acute ischemic necrosis of the kidney.

Restitution of blood volume after hemorrhage. Role of Adrenal cortex.

Plasma dopamine-beta-hydroxylase activity and catecholamines levels in anaesthetized dogs following acute hemorrhage.
Anaesthesiology, 43: 518-524.

Protein biosynthesis: Mechanism requirements and protein deficiency.

Effects of hemorrhagic and traumatic shock on renal function of dogs.

Physiology of the kidney and body fluids. 3rd ed. Chicago Year Book Medical Publishers.

Blood vessels of the mammalian renal medulla.
Science, 146: 1683-1685.

Raven, R.W. (1952):
Surgical care, Butterworth and Comp. Ltd. London.

Reynold, D.C., R.B. Lechner, Gurll, and Vargish (1979):

Rocchini, A.P. and Barger, A.C. (1979):
Renin release with carotid occlusion in the conscious dog. Role of renal arterial pressure.

Cardiac impairment and shock factors.

Ross, G. and Brown, A.W. (1967):
Cardiovascular effects of dopamine in the anaesthetised cat.

Foot shock induces stress increase β-endorphin levels in blood but not in brain.

Control of total vascular resistance in hemorrhagic shock in the dog.

Heart failure and fluid loss in hemorrhagic shock.

Treatment of experimental shock, comparison of the effects of nor­epinephrine, dibenzyline, dextran, whole blood, and balance saline solution.

Rushmer, R.F. (1965):
Neural factors regulating cardiac output! In Shock and Hypotension,

Ion transport in circulatory and/or septic shock.

Hemodynamic effects of hemorrhage and subsequent naloxone treatment in conscious rabbits.

Reversal of hypotension by naloxone in conscious rabbits.

Enkephalin-like immunoreactivity in nerve terminals in sympathetic ganglion and adrenal medulla and in adrenal medullary gland cells.

Study of the effect of noradrenaline on the microcirculation in oligemic shock.

Traumatic shock. XII. Hemodynamic effects of alterations of blood viscosity in normal dogs and in dogs in shock.

Traumatic shock: XV carbohydrate metabolism in hemorrhagic shock in the dog.

Opioid peptide enkephelin immune histochemical mapping in rat central nervous system.

(3H)opiate bindings anomalous properties in kidney and liver membranes.

The effect of l-norepinephrine upon the myocardial oxygen tension and survival in acute hemorrhagic hypotension.
Surgery, 44: 168-175.

Simeone, F.A. (1963):
Hemorrhagic Shock.

Singer, R.B. and Hastings, A.B. (1948):
Medicine, 27: 223.

Hemorrhage in normal man. Effect on renin cortisol, aldosterone and urine composition.

Plasma protein kinetics of the early transcapillary refill after hemorrhage in man.

and

The case for multiple opiate receptors. Trends Neurosci., 7: 160-164.