List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Initial modulus of different fibers</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Compliance ratio of different fibers</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Recovery properties of different fibers</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Specific gravity of different fibers</td>
<td>7</td>
</tr>
<tr>
<td>2.5</td>
<td>Moisture regain of different fibers</td>
<td>8</td>
</tr>
<tr>
<td>2.6</td>
<td>Heat of wetting of different fibers</td>
<td>8</td>
</tr>
<tr>
<td>2.7</td>
<td>Thermal conductivity of Polymers</td>
<td>9</td>
</tr>
<tr>
<td>2.8</td>
<td>Typical values for specific flexural rigidity and shape factor</td>
<td>17</td>
</tr>
<tr>
<td>2.9</td>
<td>Typical values for specific torsional rigidity and shape factor</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>Work of adhesion and contact angles for different fibers</td>
<td>44</td>
</tr>
<tr>
<td>2.11</td>
<td>Shingosen and its characteristics</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Specifications of Polyester and Viscose Fibers</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Geometrical features of different fibres</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Properties of different fibres</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Scheme for fibre mixing and preparation of yarn samples</td>
<td>63</td>
</tr>
<tr>
<td>3.5</td>
<td>Details of fabric samples</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Fabric properties measured using the FAST system</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of polyester fiber fineness and cross-sectional shapes on the properties of yarns made of 100% polyester and 67:33 P:V blends.</td>
<td>76</td>
</tr>
<tr>
<td>4.2 (a)</td>
<td>Effect of Polyester fiber linear density, level of twist and blending with viscose on diameter, U% and Neps of yarns</td>
<td>77</td>
</tr>
<tr>
<td>4.2 (b)</td>
<td>ANOVA for Yarn Diameter, U% and Neps</td>
<td>77</td>
</tr>
<tr>
<td>4.3 (a)</td>
<td>Effect of polyester fiber types, their blends and yarn twist on diameter, U% and neps of yarns</td>
<td>78</td>
</tr>
<tr>
<td>4.3 (b)</td>
<td>ANOVA for yarn diameter, U% and neps</td>
<td>78</td>
</tr>
<tr>
<td>4.4 (a)</td>
<td>Comparison of yarn parameters of Circular and trilobal fibre yarns in reference to blending and twist levels</td>
<td>79</td>
</tr>
<tr>
<td>4.4 (b)</td>
<td>ANOVA for Yarn Diameter, U% and Neps</td>
<td>79</td>
</tr>
</tbody>
</table>
4.5 Effect of polyester fiber fineness and cross-sectional shapes on stretch modulus, bending rigidity and hairiness of the yarns made of 100% polyester and 67:33 P: V blends.

4.6 (a) Effect of polyester fibre linear density, level of twist and blending with viscose on young’s modulus, flexural rigidity and hairiness index (S3) of yarns

4.6 (b) ANOVA for young’s modulus, flexural rigidity and hairiness index (S3) of yarns

4.7 (a) Effect of polyester fibre cross-sectional shapes, their blends and yarn twist on young’s modulus, flexural rigidity and hairiness count (S3) of yarns

4.7 (b) ANOVA for young’s modulus, flexural rigidity and hairiness count (S3) of yarns

4.8 (a) Comparison of yarn parameters of Circular and trilobal fibre yarns in reference to blending and twist levels

4.8 (b) ANOVA for young’s modulus, flexural rigidity and hairiness count (S3) of yarns

4.9 Effect of fiber parameters, blend percentage and fiber types on tensile behavior of yarns made of these fibres and their blend with viscose.

4.10 (a) Effect of polyester fibre properties on tensile behaviour of yarns made of polyester & their blends with viscose

4.10 (b) ANOVA for tensile behaviour of yarns made of polyester & their blends with Viscose

4.11 (a) Effect of Polyester fibre Types, their blends and yarn twist on tensile behaviour of yarn made of polyester fibres and their blends

4.11 (b) ANOVA for yarn tenacity, yarn elongation, translation efficiency, tenacity drop and Z

4.12 (a) Comparison of tensile properties of circular and trilobal fibre yarns in reference to polyester fibre percentage in blends and twist levels
4.12 (b) ANOVA for yarn tenacity and yarn elongation

5.1 Properties of single & double yarns and fabrics

5.2 Thermal properties of fabric sample (double layers)

5.3 Thermal conductivity values (λ)

5.4 Air and moisture transmission properties of fabric samples

5.5 Regression equations for Effect of Polyester Fiber linear density and blending with Viscose on comfort characteristics of their fabrics

5.6 Regression equations for effect of polyester fiber types and blending with viscose on comfort characteristics of their fabrics

5.7 Regression equations for comparison of low stress characteristics of fabrics made of circular and trilobal fibre yarns in reference to blending with viscose

5.8 Effect of polyester fibre fineness on handle and formability of 100% polyester and 67:33 P:V blended fabrics.

5.9 Regression equations for effect of polyester fiber linear density and blending with viscose on low stress characteristics of their fabrics

5.10 Regression equations for effect of polyester fiber types and blending with viscose on low stress characteristics of their fabrics

5.11 Regression equations for comparison of low stress characteristics of fabrics made of circular and trilobal fibre yarns