CHAPTER-1: INTRODUCTION AND OVERVIEW

1.1 TRANSDERMAL DRUG DELIVERY
 1.1.1 Advantages of transdermal delivery
 1.1.2 Innovations in transdermal delivery

1.2 CHEMICAL PENETRATION ENHANCEMENT TECHNOLOGIES
 1.2.1 Use of penetration enhancers
 1.2.2 Prodrugs and ion pairs
 1.2.3 Eutectic mixtures

1.3 PHYSICAL PENETRATION ENHANCEMENT TECHNOLOGIES
 1.3.1 Iontophoresis
 1.3.2 Electroporation
 1.3.3 Microneedles
 1.3.4 Needleless jet injectors
 1.3.5 Magnetophoresis
 1.3.6 Liposomes and vesicles
 1.3.7 Miscellaneous
 1.3.8 Sonophoresis
 1.3.8.1 Transmission of ultrasound from the transducer to the skin
 1.3.8.2 Mechanism of drug transport in sonophoresis
 1.3.8.2.1 Thermal effects
 1.3.8.2.2 Cavitation
 1.3.8.2.3 Streaming effect
 1.3.8.3 SONOPHORESIS IN CONJUNCTION WITH OTHER ENHANCEMENT TECHNIQUES
 1.3.8.3.1 Sonophoresis and chemical enhancers
 1.3.8.3.2 Ultrasound and iontophoresis
 1.3.8.3.3 Ultrasound and electroporation
 1.3.8.4 SONOPHORETIC COMMERCIAL SYSTEMS
 1.3.8.4.1 Patch-Cap™
 1.3.8.4.2 Sonoderm™ Technology
 1.3.8.4.3 U-Strip™
 1.3.8.4.4 MicroLYSIS
 1.3.8.4.5 SonoPrep®
 1.3.8.4.6 Ultrasonic Technologies
 1.3.8.5 SAFETY GUIDELINES

1.4 OUTLINE AND AIM OF THESIS
CHAPTER-2: LITERATURE REVIEW

2.1 TRANSDERMAL DELIVERY

2.2 SKIN MODELS
 2.2.1 Skin models used for sonophoresis

2.3 LITERATURE REVIEW ON SONOPHORESIS
 2.3.1 Corticosteroids
 2.3.2 Analgesic and antiinflammatory drugs
 2.3.3 Anesthetics
 2.3.4 Antibiotics
 2.3.5 Anticancer drugs
 2.3.6 Insulin
 2.3.7 Cardiotonics
 2.3.8 Vasodilators
 2.3.9 Hormones
 2.3.10 Cicatrizants
 2.3.11 Calcinein
 2.3.12 Oligonucleotides
 2.3.13 Stimulants
 2.3.14 Calcium
 2.3.15 Panax notoginseng
 2.3.16 Miscellaneous

CHAPTER-3: RESEARCH ENVISAGED & SELECTION OF DRUG CANDIDATE

3.1 OBJECTIVE OF THE RESEARCH

3.2 JUSTIFICATION OF THE PRESENT WORK

3.3 PLAN OF WORK

3.4 SELECTION OF DRUG CANDIDATE FOR TRANSDERMAL DELIVERY
 3.4.1 DESCRIPTION OF LOSARTAN POTASSIUM (LP)
 3.4.1.1 Pharmacokinetics of LP
 3.4.1.2 Dose requirement and combination therapy
 3.4.1.3 Pharmacological category and dose
 3.4.1.4 Therapeutic uses of LP
 3.4.1.5 Mechanism of action of LP
 3.4.1.6 LP side effects
 3.4.1.7 Drug interactions
 3.4.2 ANALYTICAL METHODS
 3.4.2.1 Analytical methods for determination of LP
 3.4.2.1.2 Analytical techniques for simultaneous estimation of LP with other drugs
CHAPTER-4: IN-VITRO SONOPHORETIC DELIVERY OF LOSARTAN POTASSIUM USING FACTORIAL DESIGN

SECTION-A: USING AQUASONIC GEL

4.1 INTRODUCTION

4.2 MATERIALS
 4.2.1 Chemicals
 4.2.2 Instruments
 4.2.3 Model skin used

4.3 PRELIMINARY STUDIES
 4.3.1 Preparation of rat skin
 4.3.2 Preparation of phosphate buffer (pH 7.4)
 4.3.3 Preparation of stock solution
 4.3.4 Calibration curve of drug by UV Spectrophotometry
 4.3.5 Solubility studies of drug
 4.3.6 Apparent partition co-efficient of drug
 4.3.7 Stability studies
 4.3.8 Sonophoretic drug delivery system
 4.3.9 Fabrication of Franz diffusion cell

4.4 METHODS
 4.4.1 Ultrasound treatment
 4.4.2 In-vitro permeation studies
 4.4.3 Calculation of permeation parameters
 4.4.4 Statistical analysis

4.5 RESULTS AND DISCUSSION
 4.5.1 Calibration curve of LP
 4.5.2 Solubility studies
 4.5.3 Apparent partition coefficient determinations of drug
 4.5.4 In-vitro permeation studies
 4.5.5 Effect of ultrasound intensity
 4.5.6 Effect of duration of ultrasound exposure
 4.5.7 Effect of mode of ultrasound application
 4.5.8 Factorial design: quantification of results

SECTION-B: USING PRONIOSOMAL GEL

4.6 METHODS
 4.6.1 Formulation of LP proniosomes
 4.6.2 Characterization of proniosomes
 4.6.3 In-vitro permeation studies using aquasonic jelly
 4.6.4 In-vitro permeation studies using proniosomal gel in both modes
 4.6.5 Permeation data analysis
 4.6.6 Statistical analysis

4.7 RESULTS AND DISCUSSION
CHAPTER-5: HISTOPATHOLOGICAL STUDIES 108-122

5.1 INTRODUCTION

5.2 MATERIALS
 5.2.1 Chemicals
 5.2.2 Instruments
 5.2.3 Animal model

5.3 METHODS

5.4 RESULTS AND DISCUSSION

CHAPTER-6: PHARMACODYNAMIC STUDIES 123-128

6.1 INTRODUCTION

6.2 MATERIALS
 6.2.1 Chemicals
 6.2.2 Instruments
 6.2.3 Animal model

6.3 METHODS
 6.3.1 Procurement and housing of animals
 6.3.2 Noninvasive BP measuring apparatus
 6.3.3 Conditioning /training of the animals
 6.3.4 Measurement of initial BP of rats
 6.3.5 Induction of hypertension in normotensive Rats
 6.3.6 Selection of hypertensive Animals
 6.3.7 Application of sonophoretic transdermal treatment and its efficacy against hypertension in rats
 6.3.8 Statistical analysis

6.4 RESULTS AND DISCUSSION

CHAPTER-7: PHARMACOKINETIC & DERMATOKINETIC STUDIES 129-146

SECTION-A: PHARMACOKINETIC STUDIES

7.1 INTRODUCTION

7.2 MATERIALS
 7.2.1 Chemicals
 7.2.2 Instruments
 7.2.3 Animal model

7.3 METHODS
 7.3.1 In-vivo experiment in wister albino rats
 7.3.2 In-vivo sonophoretic delivery of LP to rats
 7.3.3 Study design and serum sampling
 7.3.4 HPLC assay method
7.3.5 Construction of calibration curve of LP in rat serum
7.3.6 Calculation of pharmacokinetic parameters of LP in rat serum
7.3.7 Statistical analysis

7.4 RESULT AND DISCUSSION
7.4.1 Construction of calibration curve of LP in rat serum
7.4.2 Calculation of pharmacokinetic parameters of LP in rat serum

SECTION-B: DERMATOKINETIC STUDIES

7.5 METHODS
7.5.1 Preparation of mobile phase for HPLC studies
7.5.2 Preparation of standard curve in HPLC
7.5.3 Study design
7.5.4 Sonophoretic delivery of LP to rats in-vivo
7.5.5 Tape stripping procedure
7.5.6 Extraction and recovery of LP in the tape strips
7.5.7 LP analysis
7.5.8 Statistical analysis

7.6 RESULTS AND DISCUSSION

CHAPTER-8: SUMMARY AND CONCLUSIONS

REFERENCES

ANNEXURES