REVIEW OF RELATED LITERATURE

The research scholar has gone through related literature available which are relevant to the study. The relevant studies found through various sources, which the research scholar has come across, are enumerated below.

Aslan and Livanelioglu (2002) made a study “Effects of hatha yoga training on aerobic power and anaerobic power in healthy young adults”. A clinical study was carried out with the aim of investigating whether hatha yoga (HY) training affects aerobic and anaerobic power in healthy young adults. Material and method: 33 sedentary, healthy, young adult subjects, aged 18 to 26 were divided into two groups according to age, sex and activity levels. 10 female and 7 male (mean 20.06 +/- 2.41 years, range 18-26 years) young adults were trained with hatha yoga (HYG). The aerobic exercise group (AEG) consisted of 9 female and 7 male (mean 19.75 +/- 1.81 years, range 18-26 years) young adults who performed aerobic type strength and stretch exercises of at least 60% maximal heart rate or higher. Both training programs were given by a supervisor, one hour per day, four days per week, for six weeks. Subjects in both groups were assessed by Cooper’s 12 minutes running test for cardiovascular endurance and vertical jump test for anaerobic power before and after training. Results: Aerobic and anaerobic power increased
by 9.8%, 5.5% following HY and by 6.6%, 2.3% following aerobic training respectively. A significant increase was found in aerobic power and anaerobic power (p < 0.001) in HYG. There was a significant increase in aerobic power (p < 0.01) in AEG, while anaerobic power of subjects in AEG were consistently higher compared to that of before training, statistically the difference was not significant (p > 0.05). Although there was no substantial differences between the groups concerning cardiovascular endurance (p > 0.05), anaerobic power was significantly higher (p < 0.05) in the HYG. Conclusion: The results of this study suggest that HY training has positive effects on cardiovascular aerobic and anaerobic power. Therefore HY could be an exercise option for enhancing aerobic and anaerobic power in young adults.

Beth and Larkin (2006) made a study “Physical fitness of children with motor learning difficulties conducted”. Children with motor learning difficulties (MLD) tend to be less physically active than their coordinated peers and one likely consequence is a reduced level of physical fitness. In this study, 52 children with MLD aged 5 to 8 years, were compared to 52 ages- and gender matched control children across a range of health and skill related fitness components. Analyses of variance revealed significantly lower scores in the group with MLD on the tests for cardio respiratory endurance, flexibility, abdominal strength, speed, and
power than the control group. Furthermore, the group with MLD had a significantly higher Body Mass Index (BMI). These findings have implications for educators and allied health professionals working with this age group. Programs need to teach children with movement difficulties to perform tasks used in fitness assessment and also work on the development of physical fitness.

Broer (1958) made a study “Effectiveness of general basic skills curriculum for junior high school girls”. He selected two seventh grade classes randomly to receive experimental basic skills instruction. It emphasized problem solving and student understanding of simplified mechanics prior to instruction in Volleyball, Basketball and Softball. From this experiment he came to a result that general basic skill curriculum using a problem solving approach to an understanding of simplified mechanics could lead to more efficient learning on specific physical education activities.

Chhidda Giri (1965) made a study “An evaluation and study of the effects of short term yogic exercises on the general physical fitness of adolescent high school students (boys) as gauged on the basis of athletic pentathlon tests”. The practice was of asanas on the performance of selected athletic events on high school boys. He concluded that asanas do contribute to the improvement of performance and hence he
recommended them for wide use in India; especially as there do not call for any expenditure. The reported research findings on asanas generally bring out the significance of asanas in promoting certain factors of physical fitness and thereby aiding in learning motor skills, but hardly a report could be found on the application of the potentiality of asanas in relaxation and thereby aiding motor learning. Further, no study seems to have been done on the application of asanas in learning fundamental skills of basketball.

Deasi (1979) made a study “Effect of asanas on skill development in basketball”. Two groups of 20 students each were selected at the random from a list of students in 11th and 12th standard. The group A has basketball skills for a period of six weeks. They are also instructed to practice a prescribed series asana for half an hour after this lesson in basketball skills. Group B was tough only basketball skill, the same days as for group A. AAPHER basketball test for boys were administered at the beginning and end of experimental period. Deasi concluded that practicing selected asanas with proper techniques after skill practice improved the efficiency of learning shooting skill and dribbling in basketball but passing skill is not influence.

Gharote and Gangully (1973) made a study “Effect of yogic training on physical fitness”. Cardio-vascular fitness plays a vital role in
the maintenance by proper health and physical fitness. The purpose was
to determine the effect of long term yogic training program on cardio-
vascular efficiency. Harward step test was administered on eleven male
students and the results of the study indicated that one hour of daily yogic
exercises including pranayam schedule, significantly improve cardio-
vascular efficiency of the students.

Gharote (1970) conducted a study on “Effect of yogic exercises on
the strength and endurance of abdominal muscles of females.
Main purpose of this study was to determine the effect of yogic exercises
on strength on endurance of the abdominal muscles of the females.
Twelve females were selected for the study and their strength and
endurance performance were measured before starting the training
programme yogic training of three weeks duration was given to all the 12
females. After three weeks training programme their strength and
endurance were tested and significant improvement in abdominal muscles
of all females in both the components was found.

Gharote (1979) conducted a study on “Physical fitness in relation
to the practice of selected yogic exercises”. 40 residential students of a
high school, they were randomly selected and divided into experimental
and control groups, and were matched on the basis of the physical fitness
index derived from Fleishman battery of basic fitness test.
The experimental group was given training in selected yogic exercises for a period of three weeks. The training season was of 30 minutes duration after the experimental period both the groups were again tested on the same Fleishman Battery of fitness tests. Fitness indices along with the score on individual test items of both the groups were compared statistically. The results revealed that the experimental group showed significant achievement in physical fitness. Among the individual test item significant achievement in scores was observed in legs lifts, shuttle run and balance.

Hey (1972) carried out a study on “The effect of weight-training upon the accuracy of Basketball Jump Shooting”. Prime purpose for carrying out this study was to find out and record effects of weight-training upon the accuracy of jump shooting in Basketball at short and long distances. The secondary purpose was to investigate the effects of weight-training upon shooting-arm strength. Initial tests of accuracy and strength at 12 to 18 feet distance were given. Score was the number of baskets made out of 50 attempts. Four weeks’ experimental period was given to four groups. Per day 100 jump shots were practiced by all subjects per week. Treatment for each of the four groups was: (1) Jump Shot from 12 feet; (2) Jump Shot from 12 feet and weight-training; (3) Jump Shot from 18 feet; and (4) Jump Shot from 18 feet and
weight-training. The weight-training groups were trained with weights three days per week. Noticeable increase in jump shot accuracy at a given distance resulted from practice at that distance. Weight-training was not significant in affecting accuracy though it significantly increased finger flexion strength.

Hegde et al. (1983) made a study “Effects of yogic asanas and physical exercise on body flexibility in middle aged men”. A study of changes in body flexibility due to the regular practice of yogic asanas and physical exercises were studied on 40 healthy physically active middle aged (40-48 years) men. Subjects were randomly divided into two equal groups. In group A selected yoga asanas were administered daily for 1 hour for 6 months, while group B had physical exercise training programme for the same duration. The flexibility measurements were made using Leighton Flex meter at the level of neck, shoulder, trunk and hip, prior to and after the six month of the course in both the groups. There was improvement in neck rotation in both the groups, while the shoulder flexion-extension and hip flexion extension values increased only in the yoga group after training. There was no significant change in trunk flexion-extension in either group.

Kocher (1974) made a study “Some appraisal of steadiness and hand co-ordination as a result of yogic practice” Significant improvement
in two hand co-ordination and increase in hand steadiness were observed in 13 subjects at the end of nine month training in yoga and 24 subjects at the of one month training in yogic physical culture.

Kocher (1976) carried out a study to “Influence of yogic practices on mental fatigue”. He found that there was significant improvement in overall performance of the mental work in 32 subjects after 3 weeks of training in yogic physical culture.

Karwande (1981) made a study “Comparative effect of yogic and physical exercises on anxiety level and mental fatigue of children’s”. This study carried with sixty male students from seven and eight standards were as subjects. The average age of subjects was 12 years. The test of anxiety level and the test of mental fatigue were taken as a criterion measure for the purpose of the study. The tests were before and after the experimental period of six weeks. The questionnaire designed by Cattel was used for measuring the anxiety level. It consists of five anxieties measuring factor. Mental fatigue test prepared by S.P.Kappor was used. He concluded that

1. Anxiety level can be reduced by either training in selected asanas or the training physical exercises.
2. Mental fatigue can be influenced either by training selected asanas or by the training in related physical exercises.
3. Selected asanas was superior to the training in physical exercises for variables although the difference was not statistically significant.

Khodaskar (1977) made a study “Comparative study of effects of yogic and non-yogic exercises on selected physiological variables of kabaddi players”. This study was conducted on 75 males kabaddi players of age groups 18-25 years of local physical education training college. The subjects were divided into three groups, (a) experimental yogic exercises group (b) Non yogic exercises group and (c) control group. Yogic and non-yogic training programme was given respectively to group A and group B for six weeks for 30 minutes daily except Sundays. All these three groups were being involved in the common physical education programme of the college in addition to the experimental exercises regularly. The results showed that the training based on some yogic exercises had more positive effects compared to non-yogic exercises on the elected physiological variables.

Kennison and James (1979) made a study “The effects of four training programmes of the acquisition of speed and accuracy in motor performance”. Tested accuracy in one-handed push shot in Basketball and speed and accuracy in passing at a target. They gave five weeks training to 100 male college students. They divided them into four groups and gave them practice in different ways. They made one group practice with
a regulation Basketball; another group with the regulation ball and supplemented isometric exercise. The third group used a ball with twice the weight and the fourth group used the weight ball isometric exercises too. Shooting accuracy of the two groups using the weight ball improved significantly. It can be said that the difference was due to the ball rather than the isometric exercise or interaction. No significance was gained in passing accuracy. The group using the regulation ball and isometric exercises, and the weight ball shows increase in passing velocity.

Leininger et al. (2003) made a study “Appropriate balance tests when assessing the effects of yoga on healthy community-dwelling older adults”. The purpose of this study was to determine if selected balance tests are sensitive and appropriate when determining if there is a significant difference in the balance abilities on selected balance test with a group of yoga and non-yoga trained older adults. Diminished balance abilities in the elderly often predispose the individual to a potentially serious fall. If yoga training can be shown to produce significant improvement in balance with older adults it might reduce the incidence of falls and prove an effective intervention. There is numerous balance tests incorporated with older adults, but some prove more sensitive and valid when determining the risk for falls in the elderly. Subjects: 42 healthy and active community-dwelling older adults, 24 (mean age, 70.50, range
62 - 79) who have recently participated in yoga classes (Y), and 20 (mean age 72.05, range 63 - 80) who had not (NY). Methods: Three balance measurements, the Berg Balance Test (BBT), the Multidirectional Reach Test (MDRT), and the Timed Up and Go Test (TUG) was administered to the two groups. Analysis: Means were calculated for test scores from both groups. An independent t-test compared the difference in means. Results: Only the BBT showed statistical difference (54.67 (Y) VS 53.15 (NY), p < .01, although not clinically significant. Two of the items on the BBT, the Tandem Stand and 84 the One Leg Stand, showed significant differences, 3.54 (Y) VS 3.00 (NY), and 3.54 (Y) VS 2.85 (NY) respectively, p < .05. Conclusions: When testing the effect of intervention on balance ability of healthy active older adults, the BBT, MDRT and TUG tests may not be sensitive to detect significant change and may not be the most appropriate indicators. Further studies utilizing either more challenging balance tests (e.g. timed single-leg stance), or tests on a less healthy population may be necessary to detect a significant effect of yoga training on balance.

Milan et al. (2004) Motor learning is characterized by specific features and it incorporates laws that have to be observed throughout the various manifestations of an athlete’s motor activity. It is the process of acquiring, completing and using motor information, knowledge,
experience and motor programs. Performing a certain movement is only possible if a suitable motor programme for it exists. The motor process starts with a definition of the desired result and consists of three interconnected phases: the phase of basic movement coordination, the phase of accurate movement coordination and the phase of movement coordination stabilization under changeable and difficult circumstances. A precondition for efficient motor learning is an optimally accurate notion of movement which is based on the visual followed by the kinesthetic processing of information.

Memmert (2006) made a study “Long term effects of type of practice on the learning and transfer of complex motor skills”. This study analyzed the long-term effects of practice schedule on shooting performance in basketball during actual field training. 32 college students (16 female) ages 20 to 29 years completed voluntary basketball training in one of two equal-sized groups employing either constant versus random training. The constant practice group took 160 shots from the throw line, while the variable practice group took 160 shots from different positions around the restricted area. Learning and transfer (variation of throwing distance and size of the ball) performance was assessed with the basketball-shooting test before and after training and on a retention test 1 yr. later significant measures in performance were
attributed to learning and transfer in both training groups at all measurement times. Constant training groups had better acquisition and random training groups had better retention. The anticipated transfer effects in the random group were not found.

Moorthy (1982) conducted a study on “Influence of selected yogic exercises on minimum muscular fitness of the elementary school children”. The purpose of the study was to determine the influence of selected yogic exercises on minimum muscular fitness of the elementary school children. Some students of 6 to 11 years old elementary school were selected and their minimum muscular fitness was measured. Yogic training programme of selected asanas was given to all the selected subjects who were kept for yogic training programme. Six weeks yogic training was given to them and after completing the training programme again their minimum muscular fitness was measured. The result revealed a positive change amongst the school children.

Moorthy (1982) made a study “Effect of selected yogic asanas and physical exercises on flexibility”. He find out that yogic as well as physical exercise improved flexibility of 90 boys and 90 girls after six week of training as judged by curton’s flexibility test.

Nandi and Adhikari (1999) made a study “Effect of selected yogic practices on cardio-respiratory endurance of school boys.”
conducted a study on the effect of selected yogic practices on cardio-respiratory endurance of school boys. The study was undertaken on twenty male students of Rajagram S.B. Raha institution Bankura. Cardio-respiratory endurance was measured using cooper’s 12 minute run/walk test. During the experimental period the subjects were given yogic exercises for period of eight weeks. The final test was conducted after eight weeks. The data showed a significant improvement in the fitness test as a result of yogic practice.

Nielson and Gerald (1964) made a study “Effect of weight training on Basketball Shooting Accuracy”. With the result that an increase in one-hand set shooting accuracy in Basketball is obtained after practicing in a progressive weight training programme. The belief that weight training would be harmful to Basketball Shooting ability should not be taken into consideration.

Pratab (1968) made a study “Steadiness in normal before and after yogic practices”. Significant increase in hand steadiness was observed in 26 males and 8 females at end of one month training in yoga. “Relax subject” should better steadiness as compared with “tense subjects”.

Prasad et al. (1994) made a study “Comparison of effects of yoga & physical exercise in athletes”. The effect of pranayama and, a
controlled breathing practice, on exercise tests was studied in athletes in two phases; sub- maximal and maximal exercise tests. At the end of phase I (one year) both the groups (control and experimental) achieved significantly higher work rate and reduction in oxygen consumption per unit work. There was a significant reduction in blood lactate and an increase in P/L ratio in the experimental group, at rest. At the end of phase II (two years), the oxygen consumption per unit work was found to be significantly reduced and the work rate significantly increased in the experimental group. Blood lactate decreased significantly at rest in the experimental group only. Pyruvate and pyruvate- lactate ratio increased significantly in both the groups after exercise and at rest in the experimental group. The results in both phases showed that the subjects who practiced pranayama, and could achieve higher work rates with reduced oxygen consumption per unit work and without increase in blood lactate levels. The blood lactate levels were significantly low at rest.

Ray et al. (2001) made a study “Aerobic capacity and perceived exertion after practice of hatha yogic exercises”. BACKGROUND & OBJECTIVES: Reports on the effect of yogic exercises on aerobic capacity are few. There is also no literature available on the effect of yogic exercise on perceived exertion (PE) after maximal exercise. In this study the effect of training in hatha yogic exercises on aerobic capacity
and PE after maximal exercise was observed. METHODS: Forty men from the Indian army (aged 19-23 yr.) were administered maximal exercise on a bicycle ergo meter in a graded work load protocol. The oxygen consumption, carbon dioxide output, pulmonary ventilation, respiratory rate, heart rate (HR) etc., at maximal exercise and PE score immediately thereafter were recorded. The subjects were divided into two equal groups. Twelve subjects dropped out during the course of study. One group (yoga, n = 17) practiced hatha yogic exercises for every morning (6 days in a week) for six months. The other group (PT, n = 11) underwent conventional physical exercise training during the same period. Both groups participated daily in different games for 1 h in the afternoon. In the 7th month, tests for maximal oxygen consumption (VO2Max) and PE were repeated on both groups of subjects. RESULTS: Absolute value of VO2Max increased significantly (P < 0.05) in the yoga group after 6 months of training. The PE scores after maximal exercise decreased significantly (P < 0.001) in the yoga group after 6 months but the PT group showed no change. INTERPRETATION & CONCLUSION: The practice of hatha yogic exercises along with games helps to improve aerobic capacity like the practice of conventional exercises (PT) along with games. The yoga group performed better than the PT group in terms of lower PE after exhaustive exercise.
Ray et al. (2001) made a study “Effects of yogic asanas and physical exercise on body flexibility in middle aged men”. A study was undertaken to observe any beneficial effect of yogic practices during training period on the young trainees. 54 trainees of 20-25 years age group were divided randomly in two groups i.e. yoga and control group. Yoga group (23 males and 5 females) was administered yogic practices for the first five months of the course while control group (21 males and 5 females) did not perform yogic exercises during this period. From the 6th to 10th month of training both the groups performed the yogic practices. Physiological parameters like heart rate, blood pressure, oral temperature, skin temperature in resting condition, responses to maximal and sub maximal exercise, body flexibility were recorded. Psychological parameters like personality, learning, arithmetic and psychomotor ability, mental well-being was also recorded. Various parameters were taken before and during the 5th and 10th month of training period. Initially there was relatively higher sympathetic activity in both the groups due to the new work/training environment but gradually it subsided. Later on at the 5th and 10th month, yoga group had relatively lower sympathetic activity than the control group. There was improvement in performance at sub maximal level of exercise and in anaerobic threshold in the yoga group. Shoulder, hip, trunk and neck flexibility improved in the yoga group.
group. There was improvement in various psychological parameters like reduction in anxiety and depression and a better mental function after yogic practices.

Reddy (1970) has prepared “A suggested training programme of physical exercise to prevent low back pain”. He had administered the training programme on 24 male students of age group 19-23 of Lakshmibai National Institute of Physical Education, Gwalior. The group was divided into control and experimental group, first was put under a suggested programme of physical exercise and extensions of the trunk. He had used manual muscle testing technique for testing the degree of muscular weakness. After the experimental group improved, the muscle power and pain was also relieved, where as in the control group students could not improve their muscle power.

Salmon (2001) made a study “Effects of physical exercise on anxiety, depression, and sensitivity to stress”. Until recently, claims for the psychological benefits of physical exercise have tended to precede supportive evidence. Acutely, emotional effects of exercise remain confusing, both positive and negative effects being reported. Results of cross-sectional and longitudinal studies are more consistent in indicating that aerobic exercise training has antidepressant and anxiolytic effects and protects against harmful consequences of stress. Details of each of
these effects remain unclear. Antidepressant and anxiolytic effects have been demonstrated most clearly in subclinical disorder, and clinical applications remain to be exploited. Cross-sectional studies link exercise habits to protection from harmful effects of stress on physical and mental health, but causality is not clear. Nevertheless, the pattern of evidence suggests the theory that exercise training recruits a process which confers enduring resilience to stress. This view allows the effects of exercise to be understood in terms of existing psychobiological knowledge, and it can thereby provide the theoretical base that is needed to guide future research in this area. Clinically, exercise training continues to offer clinical psychologists a vehicle for nonspecific therapeutic social and psychological processes. It also offers a specific psychological treatment that may be particularly effective for patients for whom more conventional psychological interventions are less acceptable.

Sahu and Bhole (1983) made a study “Effect of three weeks yogic training programme on psychomotor performance”. The study was conducted on male subjects in age group of (25 to 45 years) of teacher training certificate course undergoing 3 weeks training in yoga education apart from the course high pitched Omkar recitation also given for this study. As part of testing programme Bhatia intelligence test battery was given to students by periodic intervals. Psychomotor performance of
subject was studied by way of ability to make the dots on the chart paper
of Mc-dought Schuster apparatus after three days of training; the subjects
were asked many dots as possible with speed and accuracy. Conclusion of
this study was that yogic training programmes increased performance
involving speed and accuracy.

Singh (2010) made a study on “A study of certain yogic asanas and
physical exercises of kinesthetic ability”. Eighty subject ages ranged
19-21 years, were randomly divided in four groups, physical exercise
group, yogic group, combined group and control group. The experimental
groups went for twelve weeks of treatment programme, both pre and
post-test were made for collection of data. The data collection was made
on kinesthetic ability test by arms raising test suggested by Scott. The
result of analysis of covariance (ANCOVA) test showed significant
difference in all the groups expects the control group. Between the
combined and yoga group, physical exercise group and yoga group, a
significant difference in paired adjusted final mean is seen in the mean
difference obtained by asana groups was most significant than other
groups.

Singh (2010) made a study “A study of certain yogic asanas and
physical exercises on Balance ability” Eighty healthy adults were divided
in four groups. Experimental group ‘A’, ‘B’, ‘C’ and control group ‘D’ of
20 subjects each were compared in this study. The purpose of this study was to investigate the response of certain asanas and exercise programme on balance ability and to assess their effectiveness as measured by ‘BASS-STRICK’ test (cross-wise), Johnson and Nelson (1988). The analysis of data revealed that the three experimental group trained by exercise, asanas and combined exercise and asanas, showed significant improvement (P>10.05), in performance of balance ability but the mean gain achieved by combined exercise and yogic asanas groups was higher than the other groups.

Tran et al. (2001) made study “Effects of hatha yoga practice on the health-related aspects of physical fitness”. Ten healthy, untrained volunteers (nine females and one male), ranging in age from 18-27 years, were studied to determine the effects of hatha yoga practice on the health-related aspects of physical fitness, including muscular strength and endurance, flexibility, cardio respiratory fitness, body composition, and pulmonary function. Subjects were required to attend a minimum of two yoga classes per week for a total of 8 weeks. Each yoga session consisted of 10 minutes of pranayamas (breath-control exercises), 15 minutes of dynamic warm-up exercises, 50 minutes of asanas (yoga postures), and 10 minutes of supine relaxation in savasana (corpse pose). The subjects were evaluated before and after the 8-week training program. Isokinetic
muscular strength for elbow extension, elbow flexion, and knee extension increased by 31%, 19%, and 28% (p<0.05), respectively, whereas isometric muscular endurance for knee flexion increased 57% (p<0.01). Ankle flexibility, shoulder elevation, trunk extension, and trunk flexion increased by 13% (p<0.01), 155% (p<0.001), 188% (p<0.001), and 14% (p<0.05), respectively. Absolute and relative maximal oxygen uptake increased by 7% and 6%, respectively (p<0.01). These findings indicate that regular hatha yoga practice can elicit improvements in the health-related aspects of physical fitness.

Telles (1993) made a study “Improvement in static motor performance following yogic training of school children”. Two groups of 45 children each, whose ages ranged from 9 to 13 years, were assessed on a steadiness test, at the beginning and again at the end of a 10-day period during which one group received training in yoga, while the other group did not. The steadiness test required insertion of and holding for 15 sec. a metal stylus without touching the sides of holes of decreasing sizes in a metal plate. The contacts were counted as “errors.” During the 10-day period, one group (the “Yoga” group) received training in special physical postures (asanas), voluntary regulation of breathing (pranayama), maintenance of silence, as well as visual focusing exercises (tratakas) and games to improve the attention span and memory. The
other group (control) carried out their usual routine. After 10 days, the “Yoga” group showed a significant (Wilcoxon's paired signed-ranks test) decrease in errors, whereas the “control” group showed no change.

Udupa et al. (2004) made a study “Modulation of cardiovascular response to exercise by yoga training”. This study reports the effects of yoga training on cardiovascular response to exercise and the time course of recovery after the exercise. Cardiovascular response to exercise was determined by Harvard step test using a platform of 45 cm height. The subjects were asked to step up and down the platform at a rate of 30/min for a total duration of 5 min or until fatigue, whichever was earlier. Heart rate (HR) and blood pressure response to exercise were measured in supine position before exercise and at 1, 2, 3, 4, 5, 7 and 10 minutes after the exercise. Rate-pressure product [RPP = (HR x SP)/100] and double product (Do P = HR x MP), which are indices of work done by the heart were also calculated. Exercise produced a significant increase in HR, systolic pressure, RPP & DOP and a significant decrease in diastolic pressure. After two months of yoga training, exercise-induced changes in these parameters were significantly reduced. It is concluded that after yoga training a given level of exercise leads to a milder cardiovascular response, suggesting better exercise tolerance.