Contents

<table>
<thead>
<tr>
<th>List of figures</th>
<th>i – ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>iii</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>iv – v</td>
</tr>
<tr>
<td>List of accession number</td>
<td>vi</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1. **Background**
2. **Aims and objectives**
3. **Research hypothesis**
4. **Thesis structure**

Chapter 2: Review of Literature

1. **Alternative splicing**
2. **Types of alternative splicing**
3. **Alternative splicing in eukaryotes**
4. **Alternative splicing in the untranslated region (UTR)**
5. **Alternative splicing in coding region**
6. **Tissue specific expression of variants arising from alternative splicing**
7. **Many disease-associated mutations that target synonymous codon positions affect splicing**
8. **Alternative splicing in the nervous system**
9. **Neurotransmitter receptors and alternative splicing**
10. **Variants of neurotransmitter receptors**
 1. **Acetylcholine receptors**
 2. **Adrenergic receptors**
 3. **Dopaminergic receptors**
 4. **GABA receptors**
 5. **Glutamate receptors**
 6. **Glycine receptors**
 7. **Histamine receptors**
 8. **Opioid receptors**
 9. **Purinergic receptors**
10. **Serotonin receptors**
11. **Methods to study alternative splicing**
 1. **Microarray technology**
 2. **Complementary DNA library screening**
 3. **Immuno-precipitation and mass spectrometry**
 4. **Rapid amplification of cDNA ends (RACE)**
 5. **Computational prediction and annotation of alternatively spliced variants**
 6. **Combination of computational and molecular biology techniques**
12. **Bioinformatics and alternative splicing**
 1. **Predicting alternatively spliced exons using comparative genomics**
 2. **Evolution of databases and tools for alternative splicing**
 3. **Issues with gene/exon prediction using bioinformatics tools**

Note: The page numbers are placeholders and should be replaced with actual page numbers.
Chapter 3: Materials and Methods

3.1. Part I: Dry lab methods
3.1.1. Sequence data set or source of gene and transcript sequences
3.1.2. Sequence formatting
3.1.3. Sequence homology analysis by pair wise and multiple sequence alignment
3.1.4. Gene and exon finding tools
3.1.5. Alternative splicing database (ASD)
3.1.6. Expressed sequence tag (EST) search and analysis
3.1.7. Primer designing
3.1.8. Promoter analysis
3.1.9. Post translational modification predictions
3.1.10. Translation efficiency and subcellular predictions
3.1.11. Secondary structure prediction
3.1.12. Web addresses for bioinformatics tools

3.2. Part II: Materials

3.3. Part III: Wet lab methods
3.3.1. Animal maintenance and breeding
3.3.2. Total RNA extraction
3.3.3. Denaturing agarose gel electrophoresis
3.3.4. 5' Rapid amplification of cDNA ends (5' RACE)
3.3.5. cDNA synthesis
3.3.6. Primers
3.3.7. Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)
3.3.8. Semi-nested PCR
3.3.9. Agarose gel electrophoresis
3.3.10. Purification of PCR products
3.3.11. TOPO-TA cloning
3.3.12. Preparation of nutrient media
3.3.13. Preparing competent E. coli cells
3.3.14. Transforming the competent E. coli cells with plasmid DNA
3.3.15. Isolation of recombinant plasmid DNA
3.3.16. DNA sequencing

Chapter 4: Identification of novel transcript variants of chrng

4.1. Introduction
4.2. Materials and methods
4.2.1. RNA preparation
4.2.2. Primers
4.2.3. 5' RACE
4.2.4. Reverse transcriptase (RT)-PCR
4.2.5. Subcloning and sequencing of RT-PCR products
4.2.6. Database analysis
4.3. Results
4.3.1. Alternatively spliced two novel transcripts of chrng having different 5' exons
4.3.2. Confirmation of T1 and T2 transcripts through RT-
Chapter 5: Identification of novel transcript variants of gria1

5.1. Introduction

5.2. Materials and methods
 5.2.1. RNA preparation
 5.2.2. Primers
 5.2.3. 5' RACE
 5.2.4. Reverse transcriptase (RT)-PCR
 5.2.5. Semi-nested RT-PCR
 5.2.6. Subcloning and sequencing of RT-PCR products
 5.2.7. Bioinformatic analysis

5.3. Results
 5.3.1. Three new and differentially expressed transcripts of gria1
 5.3.2. Comparative analysis of the new variants

5.4. Discussion

Chapter 6: Identification of novel transcript variants of htr4

6.1. Introduction

6.2. Materials and methods
 6.2.1. RNA preparation
 6.2.2. Primers
 6.2.3. 5' RACE
 6.2.4. Reverse transcriptase (RT)-PCR
 6.2.5. Semi-nested RT-PCR
 6.2.6. Subcloning and sequencing of RT-PCR products
 6.2.7. Bioinformatic analysis

6.3. Results
 6.3.1. Five new coding exons making four novel alternatively spliced transcripts of htr4 gene
 6.3.2. Expression of four new transcripts of htr4 in brain and heart of mouse
 6.3.3. An in silico analysis of the splice junction and deduced amino acid sequence of the new transcript variants

6.4. Discussion

Chapter 7: Summary

References

List of Publications

Reprints of Publications