CHAPTER-7

CONCLUSION AND FUTURE WORK

This chapter describes the conclusion, contributions, findings and target future work for the development of various strategies towards Graph mining techniques.

7.1 Conclusion

Initially this research deal with the resultant model which uses graph mining techniques for identifying the search pattern issues. For a complex graph structure detection which result in analysis of multiple data resources. This research describe the methodology for converting a well defined Graph structure to a relational data base entity, These are only some of the models with modular nature to convert it directly; there are many other models which add new ideas or combine existing models in novel ways. This research have looked at many of these and discussed their strengths and weaknesses. This research does not think that point has yet been reached. Also, typical generators try to match only one or two structures; more emphasis needs to be placed on matching the entire structures. This cycle between finding more sub structures and better components which match these new graph structures should eventually help us gain a deep insight into the formation and properties of real-world graphs.

7.2 Contributions

Initially this research deal with the classification model which uses graph mining techniques for identifying the abnormal graph structure issues. The final model is fully self explanatory without any basic domain knowledge. It can be achieved by graph kernel matching techniques, for a complex graph kernel matching which result in analysis of multiple data resources. this research describe the methodology for
converting a well defined problem to a Graph structure. These are only some of the models with modular nature to convert it directly; there are many other models which add new ideas or combine existing models in novel ways. This research have looked at many of these and discussed their strengths and weaknesses. This research does not think that point has yet been reached. Also, typical generators try to match only one or two structures; more emphasis needs to be placed on matching the entire kernel. This cycle between finding more structures and better generators which match these new structures should eventually help to gain a deep insight into the formation and properties of real-world graphs.

The overall method proves to be highly efficient compared to mining significant and open trees, dramatically reducing running time and number of features mined. Moreover, the experimental results revealed that the expressiveness of Graph matching Node impact influence optimization representatives is significantly higher than that of open trees, because a lower number of features are associated with better accuracy, mainly due to higher specificity, reducing false alarms in classification tasks. The implementation of a well defined graph kernel matching schema problem to a Graph structure is a tideous process. In future, this research will develop the Graph Template Converter model for the unstructured dataset which extend this research to propose a Graph-Strucutre-Analysis Implementer for any real-time complex entities.
7.3 FINDINGS AND FUTURE WORK

Findings:

- The abstractness in graph mining can be logically diverted towards the conversion of any real time model to a well defined finite graph model with combinational techniques.
- Any Real-time Commercial Database model can be analyzed through graph mining techniques for its betterment process implementation.
- The overall method proves to be highly efficient compared to mining significant and open trees, dramatically reducing running time and number of features mined. Moreover, the experimental results revealed that the expressiveness of Graph matching Node impact influence optimization representatives is significantly higher than that of open trees, because a lower number of features are associated with better accuracy, mainly due to higher specificity, reducing false alarms in classification tasks. The implementation of a isomorphic tree identification schema problem to a complex Tree structure is a tedious process.

The Space and Time complexity level for the Graph structure Mining algorithm consumes more or less the optimal time which will be further minimized by the implementation of Optimization techniques using genetic algorithms and Heuristics approach in near future. The implementation of Soft computing techniques associated with graph mining approaches will be the best combination in this research area in near future. In near future this research will implement the Optimized Heuristic Graph Identifier (OHGI) for matching or searching the Graph structure behaviors...