Contents

Acknowledgements .. ii

Synopsis ... iii

List of Publications .. vi

1 Introduction ... 1
 1.1 Liquid crystalline Mesophases 1
 1.2 Nematic liquid crystals 3
 1.3 Definition of the order parameter 4
 1.4 Mean field description : Statics 6
 1.4.1 Phase diagram 9
 1.5 Kinetics at zero temperature 10
 1.6 Organization of the thesis 11

2 Order parameter fluctuation in nematic liquid crystal 13
 2.1 Introduction 13
 2.2 Fluctuating kinetics of the order parameter .. 14
 2.3 Static and dynamic correlations 16
 2.3.1 Correlations in the linear theory 16
 2.3.2 Correlations in the nonlinear theory .. 17
 2.4 Conclusion 17

3 Numerical method for order parameter dynamics 19
 3.1 Introduction 19
 3.2 Non-dimensionalization of the parameters ... 20
 3.3 Method of lines 21
 3.4 Spectral collocation technique 22
 3.4.1 Benchmark of Allen-Cahn equation 23
 3.5 Stochastic method of lines 24
 3.5.1 Benchmark of Ornstein-Uhlenbeck process 24
 3.5.2 Discretization of fluctuating nematodynamics 25
 3.5.3 Correlations in the linear theory 26
 3.5.4 Correlations in the nonlinear theory .. 28
3.6 High performance computation
 3.6.1 Benchmark of Allen-Cahn equation
3.7 Visualization of order parameter fields
 3.7.1 Scalar field in Allen-Cahn equation
 3.7.2 Tensor field in nematics
3.8 Conclusion

4 Local and nonlocal properties of the isotropic-nematic interface
 4.1 Introduction
 4.2 Verification of de Gennes ansatz
 4.3 Isotropic-nematic interface with planar anchoring
 4.3.1 Benchmarking the spectral collocation technique
 4.3.2 Local biaxiality at the interface
 4.4 The isotropic-nematic interface with oblique anchoring
 4.4.1 Non-locality of the tilt angle with $\kappa > 0$
 4.4.2 Non-locality of the tilt angle with $\kappa < 0$
 4.5 Fluctuation of the I-N interface
 4.6 Conclusion

5 Diffusive scaling and defect morphology in the spinodal kinetics of nematics
 5.1 Introduction
 5.2 Phase ordering in uniaxial nematics
 5.2.1 Point defects: core structure and dynamics
 5.2.2 Dynamical scaling in two dimensions
 5.2.3 Intercommutation, loop formation of line defects in three dimensions
 5.3 Fluctuating defect kinetics
 5.4 Phase ordering in biaxial nematics
 5.4.1 Point defects: core structure and dynamics
 5.4.2 Dynamical scaling in two dimensions: separation of time scale
 5.4.3 Visualization of line defects commutation in three dimensions
 5.5 Conclusion

6 Breakdown of classical nucleation theory in nucleation kinetics
 6.1 Introduction
 6.2 Structure of nucleated nematic droplets in two dimensions
 6.2.1 Circular droplets with uniform director at $\kappa = 0$
 6.2.2 Complex droplet geometry with integer defect at $\kappa > 0$
 6.2.3 Ellipsoidal droplets with uniform director at $\kappa < 0$
 6.3 Structure of nucleated nematic droplets in three dimensions
 6.3.1 Spherical droplets with $\kappa = 0$
 6.3.2 Ellipsoidal droplets with $\kappa > 0$
 6.3.3 Ellipsoidal droplets with $\kappa < 0$
 6.4 Conclusion
7 Conclusions

A Nematodynamic equations 93
B Equation for the isotropic-nematic interface 97
C Index of animations 99

Bibliography 103
List of Figures

1.1 Experimental realization of Kibble mechanism 2
1.2 Schlieren textures in Optical microscopy 2
1.3 Schematic representation of isotropic and nematic phase 3
1.4 Free energy diagram 8
1.5 Phase diagram 10

3.1 Interface in Allen-Cahn equation 23
3.2 Autocorrelation function for the Ornstein-Uhlenbeck process 25
3.3 Orientational distribution 26
3.4 Structure factor in linear theory 27
3.5 Autocorrelation of Langevin Equation 28
3.6 Structure factor in nonlinear theory 29
3.7 Isosurfaces of the scalar field 31
3.8 Visualization of tensor field 32

4.1 I-N interface geometry 37
4.2 Diagram verifying de Gennes ansatz 40
4.3 Spectral convergence in I-N interface 41
4.4 Uniaxial and biaxial order with planar anchoring 42
4.5 Uniaxial-biaxial degrees and local tilt with oblique anchoring 45
4.6 Uniaxial-biaxial degrees and local tilt with oblique anchoring 47
4.7 Interface with thermal fluctuation 48

5.1 Uniaxial and biaxial order and textures in uniaxial nematic crystal 55
5.2 Defect core structure in uniaxial phase 56
5.3 Dynamical scaling of the direct correlator in the uniaxial phase 57
5.4 Data collapse of the structure factor in the uniaxial phase 58
5.5 Defect strings in uniaxial phase 59
5.6 Inter-commutation of defect strings 60
5.7 Dynamical scaling of the structure function of the uniaxial phase in 3D 61
5.8 Effect of thermal fluctuations on density of point defects 62
5.9 Point defects and texture in biaxial phase 63
5.10 Biaxial defect core structure 64
5.11 Dynamical scaling in the biaxial phase in 2D 65
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12</td>
<td>Dynamical scaling in biaxial quench</td>
</tr>
<tr>
<td>5.13</td>
<td>Defect strings in biaxial phase</td>
</tr>
<tr>
<td>5.14</td>
<td>Intercommutation of biaxial defect strings</td>
</tr>
<tr>
<td>5.15</td>
<td>Dynamical scaling of the structure function of the uniaxial phase in 3D</td>
</tr>
<tr>
<td>6.1</td>
<td>Circular drops with $\kappa = 0$</td>
</tr>
<tr>
<td>6.2</td>
<td>Shape of nematic drops at zero temperature with $\kappa = 0$</td>
</tr>
<tr>
<td>6.3</td>
<td>Ellipse-shaped drops with $\kappa > 0$</td>
</tr>
<tr>
<td>6.4</td>
<td>Shape of nematic drops at zero temperature with $\kappa > 0$</td>
</tr>
<tr>
<td>6.5</td>
<td>Nucleating ellipse-shaped drops at $\kappa < 0$</td>
</tr>
<tr>
<td>6.6</td>
<td>Shape of nematic drops at zero temperature with $\kappa < 0$</td>
</tr>
<tr>
<td>6.7</td>
<td>Spherical droplets in 3-dimensions with $\kappa = 0$</td>
</tr>
<tr>
<td>6.8</td>
<td>Cross-section and field structure of nucleating drops</td>
</tr>
<tr>
<td>6.9</td>
<td>3D structures of uniaxial droplets with $\kappa > 0$</td>
</tr>
<tr>
<td>6.10</td>
<td>Field structure and cross-section of a droplet with $\kappa > 0$</td>
</tr>
<tr>
<td>6.11</td>
<td>Nucleating drops with $\kappa < 0$</td>
</tr>
<tr>
<td>6.12</td>
<td>Droplet Cross-section and field structure with $\kappa < 0$</td>
</tr>
</tbody>
</table>