Chapter 4

Some Applications of Nice Submodules

Go down deep enough into anything and you will find mathematics.

-Dean Schlicter

4.1. Introduction

Naji [46] introduced the concepts of summable and σ-summable modules. Here we generalize these concepts to weakly summable and weakly n-summable modules. A $QTAG$-module M of countable length is weakly n-summable if $H^n(M) = \bigcup_{i<\omega} M_i$, $M_i \subseteq M_{i+1} \subseteq H^n(M)$ and the heights of the elements of M assume only finitely many values. If $n = 1$, these modules are summable. In fact n-summable modules are summable but the converse is not true in general. In section two we investigate n-summable and n-layered modules in terms of nice submodules which are very significant in the study. Section three deals with α-modules. We also study pillared and strongly pillared $QTAG$-modules. Naji [46] defined HT-modules and here we extend this study in section four, find an easy equivalent definition of HT-modules and obtain interesting results. Last section is devoted to the study of ω_1-separable and weakly ω_1-separable modules. We find that the property of being ω_1-separable or weakly ω_1-separable module is shared by the finite direct sums of the modules with the same property. Direct summands also inherit these properties.

4.2 Weakly n-Summable and n-Layered $QTAG$-Modules

We start with the following:

Definition 4.2.1. A $QTAG$-module M is weakly n-summable if $H^n(M) = \bigcup_{i<\omega} M_i$, $M_i \subseteq M_{i+1} \subseteq H^n(M)$ and the heights of the elements of M_i’s assume
only finitely many values. When \(n = 1 \), then \(M \) is summable if the length of \(M \) is countable.

The nice submodules are significant in the study of \(QTAG \)-modules. The following result emphasise this claim.

Theorem 4.2.2. Suppose the \(QTAG \)-module \(M \) has a nice submodule \(N \) of countable length such that \(M/N \) is a weakly \(n \)-summable module of countable length. Then \(M \) is a weakly \(n \)-summable module if and only if \(H^n(\sigma) = \bigcup_{i<\omega} N_i \subseteq N_{i+1} \subseteq H^n(M) \) and all \(N_i \)'s are height-finite in \(M \).

Proof. If \(H^n(M) = \bigcup_{i<\omega} M_i \) and all \(M_i \)'s are height-finite in \(M \), then \(H^n(M) = \bigcup_{i<\omega} N_i \) if \(N_i = M_i \cap N \). Now \(N_i \subseteq N_{i+1} \subseteq H^n(M) \) and all \(N_i \)'s are height-finite in \(M \).

Conversely, suppose \(M/N \) is of countable length. Now there exists an ordinal \(\sigma \) such that \(H_\sigma(M/N) = (H_\sigma(M) + N)/N = 0 \), i.e., \(H_\sigma(M) \subseteq N \). Again \(N \) is of countable length and there exists some ordinal \(\rho \) such that \(H_\rho(N) = 0 \). Thus \(H_{\rho+\sigma}(M) = 0 \). Since \(\rho + \sigma \) is again countable \(M \) is of countable length. Now, \(H^n(M/N) = \bigcup_{i<\omega} (K_i/N) \) where \(K_i \subseteq K_{i+1} \subseteq M \), \(H_n(K_i) \subseteq N \) and for every \(i \), \((K_i/N) \)'s are height-finite in \(M/N \). Therefore there exist ordinals \(\mu_1, \ldots, \mu_i \) such that the nonzero elements of \(K_i/N \) are contained in \([(H_{\mu_1}(M/N) \setminus H_{\mu_1+1}(M/N)) \cup \ldots \cup (H_{\mu_i}(M) \setminus H_{\mu_i+1}(M))] \) and we may write

\[
N_i \setminus \{0\} \subseteq [(H_{\lambda_1}(M) \setminus H_{\lambda_1+1}(M)) \cup \ldots \cup (H_{\lambda_i}(M) \setminus H_{\lambda_i+1}(M))]
\]

for some ordinals \(\lambda_1, \lambda_2, \ldots, \lambda_i \). Since \(\left(\frac{H^n(M) + N}{N} \right) \subseteq H^n \left(\frac{M}{N} \right) \), \(H^n(M) = \bigcup_{i<\omega} H^n(K_i) = \bigcup_{i<\omega} M_i \), where \(M_i = H^n(K_i) \).

Now we choose an ascending chain of submodules \(\{T_i\}_{i<\omega} \) of \(H^n(M) \) such that \(T_i \cap N = 0 \) and \((T_i \oplus N)/N = (K_i/N) \cap (H^n(M) + N)/N \). Therefore \(T_i = H^n(K_i) + N \) because \(T_i \subseteq H^n(K_i) \). Since \(H^n(N) = \bigcup_{i<\omega} N_i \), \(N_i \subseteq N_{i+1} \subseteq H^n(N) \), we have to show that \(H^n(M) = (T_i \oplus N_i) \). For \(x \in H^n(M) \), \(x + N \in (H^n(M) + N)/N \subseteq H^n(M/N) \). Thus \(x + N \in (K_\ell/N) \cap ((H^n(M) + N)/N) \) for some \(\ell \) and we have \(x + N \subseteq T_\ell + N \). Therefore \(x \in T_\ell + H^n(N) \).
or \(x \in T_k \oplus N_k \) for some index \(k \) and \(H^n(M) = \bigcup_{i<\omega} (T_i \oplus N_i) \).

Since \(N \) is nice in \(M \), we have \(((T_i \oplus N)/N)\{N\} \subseteq (K_i/N)\{N\}\subseteq \frac{H_{\mu_1}(M) + N}{N} \cup \ldots \cup \frac{H_{\mu_i}(M) + N}{N} \cup \ldots \cup \frac{H_{\mu_{i+1}}(M) + N}{N} \).

Therefore
\[
(T_i \oplus N) \setminus N \subseteq [(H_{\mu_1}(M) + N) \setminus (H_{\mu_{i+1}}(M) + N)] \cup \ldots \cup [(H_{\mu_i}(M) \setminus (H_{\mu_{i+1}}(M)) + N] = (H_{\mu_i}(M) \setminus (H_{\mu_{i+1}}(M)) \cup \ldots \cup (H_{\mu_i}(M) \setminus (H_{\mu_{i+1}}(M)) + N).
\]

Also \(T_i \setminus N = T_i \setminus \{0\} \subseteq [(H_{\mu_1}(M) \setminus (H_{\mu_{i+1}}(M)) \cup \ldots \cup (H_{\mu_i}(M) \setminus (H_{\mu_{i+1}}(M)) + N]. \)

Since \(H^n(M) + N) = H^n(M) + H^n(N) \) for each ordinal \(\alpha \), we have
\[
T_i \setminus N \subseteq [(H_{\mu_i}(M) \setminus (H_{\mu_{i+1}}(M)) \cup \ldots \cup (H_{\mu_i}(M) \setminus (H_{\mu_{i+1}}(M)) + H^n(N).
\]

Now we select an ascending chain of submodules \(\{Q_i\}_{i<\omega} \) of \(H^n(M) \) such that \(Q_i \subseteq T_i \), for every \(i \), with \(\bigcup_{i<\omega} Q_i = \bigcup_{i<\omega} T_i \), and \(Q_i \setminus \{0\} \subseteq [(H_{\mu_1}(M) \setminus (H_{\mu_{i+1}}(M)) \cup \ldots \cup (H_{\mu_i}(M) \setminus (H_{\mu_{i+1}}(M)) + N_i \) with \((Q_i \oplus N_i + H_{\beta+1}(M)) \cap H^n(N) \subseteq N_i \) for every ordinal \(\beta \neq \mu_i, \lambda_i \). Therefore
\[
H^n(M) = \bigcup_{i<\omega} (Q_i + N_i) \text{ with } Q_i + N_i \subseteq Q+i+ N_i+1.
\]

Let \(x \in Q_i + N_i \) such that \(x = u_i + v_i, \ u_i \in Q_i, \ v_i \in N_i \). Thus \(u_i \in Q_i \setminus \{0\} \subseteq T_i \setminus \{0\} \subseteq (H_{\mu_1}(M) \setminus (H_{\mu_{i+1}}(M)) \cup \ldots \cup (H_{\mu_i}(M) \setminus (H_{\mu_{i+1}}(M)) \) and
\[
v_i \in N_i \setminus \{0\} \subseteq [(H_{\lambda_1}(M) \setminus (H_{\lambda_{i+1}}(M)) \cup \ldots \cup (H_{\lambda_i}(M) \setminus (H_{\lambda_{i+1}}(M))].
\]

If \(H_M(u_i) \neq H_M(v_i) \) then \(H_M(x) = \min\{H_M(u_i), H_M(v_i)\} \in \{\mu_1, \ldots, \mu_i, \lambda_1, \ldots, \lambda_i\} \). Otherwise, if \(H_M(u_i) = H_M(v_i) \) then suppose on contrary that \((Q_i \oplus N_i) \cap (H_{\beta}(M) \setminus (H_{\beta+1}(M)) \) is non-empty for some \(\beta \neq \mu_1, \ldots, \mu_i, \lambda_1, \ldots, \lambda_i \). Now \(H_M(x) = \beta \) for some \(x \). Since \(x + N \in [(K_i/N)\{N\} \cap (H_{\beta}(M) + N)/N = [(K_i/N)\{N\} \cap H_{\beta}(M/N), \) \(x + N \) must belong to \(H_{\beta+1}(M/N) = (H_{\beta+1}(M) + N)/N \). Therefore \(x \in H^n(H_{\beta+1}(M) + N) = H^n(H_{\beta+1}(M)) + H^n(N) \) and so \(x = u_\beta + v, \) for some \(u_\beta \in H^n(H_{\beta+1}(M)) \) and some non-zero \(v \in H^n(N) \setminus \{0\} \). Thus \(x - u_\beta = v \in (Q_i \oplus N_i + H_{\beta+1}(M)) \cap H^n(N) \subseteq N_i \) and \(v \in N_i \) with \(H_M(v) = \beta \) because \(H_M(x) = \beta \) and \(H_M(u_\beta) \geq \beta + 1 > \beta \).
Therefore \((N_i \setminus \{0\}) \cap (H_\beta(M) \setminus H_{\beta+1}(M))\) is not empty which is a contradiction. We finally infer that \((Q_i \oplus N_i) \setminus \{0\} \subseteq (H_{\mu_i}(M) \setminus H_{\mu_i+1}(M)) \cup \ldots \cup (H_{\nu_i}(M) \setminus H_{\nu_i+1}(M)) \cup (H_{\lambda_i}(M) \setminus H_{\lambda_i+1}(M)) \cup \ldots \cup (H_{\lambda_i}(M) \setminus H_{\lambda_i+1}(M))\), whence they are height-finite in \(M\) as required.

An immediate consequence of the above result can be stated as follows:

Corollary 4.2.3. Let \(N\) be a nice and isotype submodule of a \(QTAG\)-module \(M\) such that \(M/N\) is a weakly \(n\)-summable module. Then \(M\) is a weakly \(n\)-summable module if and only if \(N\) is a weakly \(n\)-summable module.

Now we investigate \(n\)-layered \(QTAG\)-modules and we start with the following:

Definition 4.2.4. A \(QTAG\)-module \(M\) is said to be \(n\)-layered if \(H^n(M) = \bigcup_{i<\omega} M_i\), \(M_i \subseteq M_{i+1} \subseteq H^n(M)\) and all the elements of \(M\) assume a finite number of finite heights. Equivalently \(M_i \cap H_i(M) \subseteq H_\omega(M)\) for every \(i\).

For \(n = 1\), these modules are \(\Sigma\)-modules. All the \(n\)-layered \(QTAG\)-modules are \(\Sigma\)-modules but the converse is not true if \(n \geq 2\). Moreover, each weakly \(n\)-summable module is \(n\)-layered module and the converse is not true in general.

Proposition 4.2.5. For \(n \geq 1\), every \(n\)-layered module of length \(< \omega\) is weakly \(n\)-summable.

Proof. For a \(n\)-layered module \(M\), we may write \(H^n(M) = \bigcup_{i<\omega} M_i\), \(M_i \subseteq M_{i+1} \subseteq H^n(M)\) and for every \(i < \omega\), \(M_i \cap H_i(M) \subseteq H_\omega(M)\). Since the length of \(H_\omega(M) < \omega\), \(H_\omega(M)\) is bounded by some \(k \geq 1\) and \(H_{\omega+k}(M) = 0\). Therefore \(M_i\)'s have only finitely many height values in \(M\) i.e., \(M_i\)'s are height-finite and \(M\) is weakly \(n\)-summable.

Theorem 4.2.6. Let \(N\) be a nice submodule of the \(QTAG\)-module \(M\) such that \(N \cap H_{\omega+n}(M) = H_{\omega+n}(N)\) and \(M/N\), \(n\)-layered. Then \(M\) is \(n\)-layered.
if and only if \(H^n(N) = \bigcup_{i<\omega} N_i \), \(N_i \subseteq N_{i+1} \subseteq H^n(N) \) and for all \(i < \omega \), \(N \cap H_i(M) \subseteq H_\omega(M) \).

Proof. If \(M \) is \(n \)-layered module then \(H^n(M) = \bigcup_{i<\omega} M_i \), \(M_i \subseteq M_{i+1} \subseteq H^n(M) \) and for every \(i < \omega \), \(M_i \cap H_i(M) \subseteq H_\omega(M) \). Thus \(H^n(N) = \bigcup_{i<\omega} N_i \), where \(N_i = N \cap M_i \). Since \(N_i \subseteq N_{i+1} \subseteq H^n(N) \) and
\[
N_i \cap H_i(M) \subseteq M_i \cap H_i(M) \subseteq H_\omega(M)
\]
for every \(i < \omega \), we are done.

For the converse, we may write \(H^n(M/N) = \bigcup_{i<\omega} (K_i/N) \), where \(K_i \subseteq K_{i+1} \subseteq M \) with \(H_n(B_i) \subseteq N \) and for every \(i < \omega \), \((K_i/N) \cap H_i(M/N) \subseteq H_\omega(M/N) \). Hence \(K_i \cap H_i(M) \subseteq H_\omega(M) + N \). Since \(H^n(M) + N \subseteq \bigcup_{i<\omega} (K_i/N) \) and for every \(i < \omega \), \((K_i/N) \cap H_i(M) \subseteq H_\omega(M) + N \). Therefore \(x + N \in (H^n(M) + N)/N \subseteq H^n(M/N) \) and therefore \(x + N \in (K_\ell/N) \cap [(H^n(M) + N)/N] \) for some \(\ell \). This implies that \(x + N \subseteq T_\ell \oplus N \) and \(x \in T_\ell \oplus N \). Therefore \(x \in T_\ell \oplus H^n(N) \) or \(x \in T_j \oplus N_j \) for some \(j \) and \(H^n(M) = \bigcup_{i<\omega} (T_i \oplus N_i) \). Again we choose an ascending chain \(\{Q_i\}_{i<\omega} \) of submodules of \(H^n(M) \) such that for every \(i \), \(Q_i \subseteq T_i \) with \(\bigcup_{i<\omega} Q_i = \bigcup_{i<\omega} T_i \) and \((Q_i \oplus N_i) \cap H_i(M) \subseteq H_\omega(M) + N_i \). The selection of \(Q_i \)'s is ensured because \(T_i \oplus N_i \subseteq T_i \oplus N \subseteq K_i \) with \((T_i \oplus N_i) \cap H_i(M) \subseteq K_i \cap H_i(M) \subseteq H^n(H_\omega(M) + N) = H^n(H_\omega(M)) + H^n(N) \subseteq H_\omega(M) + H^n(N) \). Now \(H^n(M) = \bigcup_{i<\omega} (Q_i \oplus N_i) \) where \((Q_i \oplus N_i) \subseteq (Q_{i+1} \oplus N_{i+1}) \). Finally we have to show that \((Q_i \oplus N_i) \cap H_i(M) \subseteq H_\omega(M) \). We have
\[
(Q_i \oplus N_i) \cap H_i(M) \subseteq (H_\omega(M) + N_i) \cap H_i(M) = H_\omega(M) + (N_i \cap H_i(M)) = H_\omega(M).
\]
Since \(N_i \cap H_i(M) \subseteq H_\omega(M) \), we are done.
Now we state an immediate consequence of the above discussion.

Corollary 4.2.7. Let \(N \) be a nice and isotype submodule of \(M \) such that \(M/N \) is \(n \)-layered. Then \(M \) is a \(n \)-layered module if and only if \(N \) is a \(n \)-layered module.

4.3 \(\alpha \)-Modules

Naji [46] defined \(\alpha \)-modules and obtained some interesting results. A \(QTAG \)-module \(M \) is an \(\alpha \)-module if \(M/H_\beta(M) \) is totally projective for each \(\beta < \alpha \). Now we further develop the study of \(\alpha \)-modules. We prove some basic results.

Lemma 4.3.1. Direct sums and direct summands of the \(QTAG \)-modules having nice systems also have nice systems.

Proof. Consider the \(QTAG \)-module \(M = \bigoplus M_i \) such that each \(M_i \) is a \(QTAG \)-module having a nice system. Let \(\{N_{ij}\}_{j \in J} \) be a system of nice submodules of \(M_i \), \(i \in I \) such that

(i) \(\{0\} \in \{N_{ij}\} \);

(ii) for any subset \(\{N_{ik}\} \) in \(\{N_{ij}\} \), \(\Sigma N_{ik} \in \{N_{ij}\} \);

(iii) for any \(N_{ij} \in \{N_{ij}\} \) and a countable subset \(\{x_\ell\} \) of \(M \), there exists \(N_{ik} \in \{N_{ij}\} \) such that \(N_{ij} + \Sigma x_\ell R \subseteq N_{ik} \) and \(N_{ik}/N_{ij} \) is countably generated.

Consider the set \(B \) of all submodules of \(M \) which are of the form \(N = \bigoplus N_{ij} \) with \(N_{ij} \in \{N_{ij}\} \). Now each \(N \) is nice in \(M \), thus (i) and (ii) are satisfied for \(\{N_{ij}\} \). For a countable subset \(\{x_\ell\} \subseteq M \) and \(N \in B \), there exist a countable subset \(I' \) of \(I \) such that \(\Sigma x_\ell R \subseteq \bigoplus_{i \in I'} M_i \) and for each \(i \in I' \), there is a submodule \(N_{ik} \in \{N_{ij}\} \) such that \(N_{ij} \subseteq N_{ik} \) and \(g \left(\frac{N_{ik}}{N_{ij}} \right) \leq \omega \). Let \(M = M' \oplus M'' \) be direct sum of \(QTAG \)-modules such that \(M \) has a nice system \(\{N_i\} \) satisfying the properties (i), (ii) and (iii). We may define \(\{N'_i\} \) as a set of all submodules \(M' \) such that for some \(N_i \in \{N_i\} \), \(N_i = N'_i \oplus (N_i \cap M'') \) holds. Now \(N'_i \) is nice in \(M' \). Thus \(\{N'_i\} \) satisfying (i) and (ii). Consider a countable
subset \(\{x_i'\} \subseteq M' \) and \(N_i' \in \{N_i'\} \). Now \(N_i \) satisfies \(N_i = N_i' \oplus (N_i \cap M'') \). We may choose \(N_i \in \{N_i\} \) such that \(N_i + \Sigma x_i R \subseteq N_i \) and \(g\left(\frac{N_i}{N_i'} \right) \leq \omega \). There are submodules \(K_1, K_2 \) such that \(N_i' \subseteq K_i \subseteq M' \), \(N_i \cap M'' \subseteq K_2 \subseteq M'' \) with \(g\left(\frac{K_1}{N_i'} \right) \leq \omega \) and \(g\left(\frac{K_2}{N \cap M''} \right) \leq \omega \) satisfying \(N_i \subseteq K_1 \oplus K_2 \). We may select \(N_{\nu} \in \{N_i\} \) with \(N_i + K_i \subseteq N_{\nu} \) and \(g\left(\frac{N_{\nu}}{N_i} \right) \leq \omega \). On repeating the process we get chains of modules \(N_i \in \{N_i\} \), \(K_{ii} \subseteq M' \) and \(K_{2i} \subseteq M'' \) with \(N_{ij} \subseteq K_{1j} \oplus K_{2j} \), \(N_j + K_{1j} = N_{j+1} \) and \(g\left(\frac{N_{ij}}{N_i} \right) \leq \omega \). Therefore \(\cup N_{ij} \in \{N_i\} \) satisfies \(\cup N_{ij} = (\cup N_{ij} \cap M') \oplus (\cup N_{ij} \cap M'') \) and \(\cup N_{ij} \cap M' \in \{N_i'\} \). Also \(N_i' + \Sigma x_i R \subseteq \cup N_{ij} \cap M' \) and \(g\left(\frac{\cup N_{ij} \cap M'}{N_i'} \right) \leq g\left(\frac{\cup N_{ij} \cap M''}{N_i} \right) \leq \omega \).

Lemma 4.3.2. Let \(N \) be a nice and isotype submodule of a \(QTAG \)-module \(M \). Then for each ordinal \(\beta \), the following hold:

(i) \((H_{\beta}(M) + N)/H_{\beta}(M) \) is nice and isotype in \(M/H_{\beta}(M) \);

(ii) \(H_{\beta}(N) \) is nice in \(M \);

(iii) \(N/H_{\beta}(N) \) is nice and isotype in \(M/H_{\beta}(N) \).

Proof. Since \(N \) is isotype in \(M \), for each ordinal \(\rho < \beta \), we have

\[
[(H_{\beta}(M) + N)/H_{\beta}(M)] \cap H_{\rho}(M/H_{\beta}(M)) = [(H_{\beta}(M) + N)/H_{\beta}(M)] \cap H_{\rho}(M)/H_{\beta}(M) = [(H_{\beta}(M) + N) \cap H_{\rho}(M)]/H_{\beta}(M) = (H_{\beta}(M) + (N \cap H_{\rho}(M))) / H_{\beta}(M) = (H_{\beta}(M) + H_{\rho}(N)) / H_{\beta}(M) \subseteq (H_{\beta}(M) + H_{\rho}(N + H_{\beta}(M))) / H_{\beta}(M) \subseteq H_{\rho}((H_{\beta}(M) + N)/H_{\beta}(M)),
\]

therefore \((H_{\beta}(M) + N)/H_{\beta}(M) \) is isotype in \(M/H_{\beta}(M) \). In order to prove that \((H_{\beta}(M) + N)/H_{\beta}(M) \) is nice in \(M/H_{\beta}(M) \), it is sufficient to prove that

\[67\]
\(H_\beta(M) + N \) is nice in \(M \). For any limit ordinal \(\sigma \), there may be two cases. If \(\sigma \leq \beta \), then
\[
\bigcap_{\rho < \sigma} (H_\beta(M) + N + H_\rho(M)) = \bigcap_{\rho < \sigma} (N + H_\rho(M)) = N + H_\sigma(M) = H_\beta(M) + N + H_\sigma(M).
\]
If \(\sigma > \beta \), then
\[
\bigcap_{\rho < \sigma} (H_\beta(M) + N + H_\rho(M)) = [\bigcap_{\rho < \sigma} (H_\sigma(M) + N)] \cap [\bigcap_{\beta \leq \rho < \sigma} (H_\beta(M) + N)] = \bigcap_{\rho < \beta} ((H_\rho(M) + N) \cap (H_\beta(M) + N)) = H_\beta(M) + N = H_\beta(M) + N + H_\sigma(M)
\]
and we are done.
Since \(N \) is nice in \(M \), for each limit ordinal \(\sigma \),
\[
\bigcap_{\rho < \sigma} (N + H_\rho(M)) = N + H_\sigma(M).
\]
Therefore for each limit ordinal \(\sigma > \beta \), we have
\[
\bigcap_{\rho < \sigma} (H_\beta(N) + H_\rho(M)) = [\bigcap_{\rho < \beta} (H_\beta(N) + H_\rho(M))] \cap [\bigcap_{\beta \leq \rho < \sigma} (H_\beta(N) + H_\rho(M))] \subseteq (N + H_\sigma(M)) \cap H_\beta(M) = H_\sigma(M) + (N \cap H_\beta(M)) = H_\sigma(M) + H_\beta(N)
\]
as required.
For \(\sigma \leq \beta \) we have
\[
\bigcap_{\rho < \sigma} (H_\beta(N) + H_\rho(M)) = \bigcap_{\rho < \sigma} H_\rho(M) = H_\sigma(M) = H_\sigma(M) + H_\beta(N).
\]

Thus in both cases \(\bigcap_{\rho<\sigma} (H_\beta(N) + H_\rho(M)) = H_\sigma(M) + H_\beta(N) \) as required.

Since \(H_\beta(N) \) is always nice in \(N \) and \(N \) is nice in \(M \), \(H_\beta(N) \) is always nice in \(M \). Now \(N \) is nice in \(M \), due to [46] \(N/H_\beta(N) \) is nice in \(M/H_\beta(N) \). Now for every ordinal \(\sigma \),

\[
(N/H_\beta(N)) \cap H_\sigma(M/H_\beta(N)) = [N \cap (H_\sigma(M) + H_\beta(N))]/H_\beta(N)
\]

\[
= (H_\beta(N) + H_\sigma(N))/H_\beta(N)
\]

\[
= H_\sigma(N/H_\beta(N))
\]

and \(N/H_\beta(N) \) is isotype in \(M/H_\beta(N) \).

Remark 4.3.3. let \(N \) be any submodule of a \(QTAG \)-module \(M \). For every \(k < \omega \), \(H_k(M) + N \) is nice in \(M \). In fact for every limit ordinal \(\sigma \),

\[
\bigcap_{\rho<\sigma} (H_k(M) + N + H_\rho(M)) = \bigcap_{k<\rho<\sigma} (H_k(M) + N) = H_k(M) + N + H_\sigma(M).
\]

Now we are able to prove the following result.

Theorem 4.3.4. Let \(N \) be a nice and isotype submodule of a \(QTAG \)-module \(M \) and \(M/N \) an \(\alpha \)-module. Then \(M \) is an \(\alpha \)-module if and only if \(N \) is an \(\alpha \)-module.

Proof. We have \((H_\beta(M) + N)/H_\beta(M) \cong N/(N \cap H_\beta(M)) = N/H_\beta(N) \) and

\[
(M/N) \cong \frac{M}{(H_\beta(M) + N)/N} \cong \frac{M}{(H_\beta(M) + N)}/H_\beta(M)
\]

is totally projective. By Lemma 4.3.2, \((H_\beta(M) + N)/H_\beta(M) \) is nice and isotype in \(M/H_\beta(M) \), for all ordinals \(\beta \). Again \(\frac{M}{H_\beta(M)} \cong \frac{N}{H_\beta(N)} \oplus \frac{M/N}{H_\beta(M/N)} \). Therefore \(M/H_\beta(M) \) must be totally projective for all \(\beta < \alpha \), if \(N/H_\beta(M) \) is totally projective. Thus \(M \) is an \(\alpha \)-module.

Conversely, if \(M/H_\beta(M) \) is totally projective then by Lemma 4.3.1, \(N/H_\beta(N) \) is also totally projective being isomorphic to a summand of \(M/H_\beta(M) \).
A QTAG-module M is said to be pillared module, if $M/H_\omega(M)$ is a direct sum of uniserial modules. We extend this concept to strongly pillared modules.

Definition 4.3.5. A submodule N of a QTAG-module is **strong** if it is contained in $K \subseteq M$, where K is a direct sum of uniserial modules. Moreover N is strongly pillared in M if $N/H_\omega(M)$ is strong in $M/H_\omega(N)$.

Theorem 4.3.6. Let M be a QTAG-module with a nice submodule N such that M/N is pillared. If N is strongly pillared in M, then M is pillared. The converse holds if $N \cap H_\omega(M) = H_\omega(N)$. Moreover, if N is h-pure in M, then M is pillared if and only if N is pillared.

Proof. Since M/N is pillared, $\frac{(M/N)}{H_\omega(M/N)}$ is a direct sum of uniserial modules. Now we have

$$\frac{(M/N)}{H_\omega(M/N)} = \frac{(M/N)}{(H_\omega(M) + N)/N} \cong \frac{M}{H_\omega(M) + N} \cong \frac{(M/H_\omega(M))}{(H_\omega(M) + N)/H_\omega(M)}$$

is a direct sum of uniserial modules. Now $N/H_\omega(N) = \bigcup_{k<\omega} (N_k/H_\omega(N))$ such that $H_\omega(N) \subseteq N_k \subseteq N_{k+1}$ and for every k, $N_k \cap H_k(M) = H_\omega(N)$. Therefore $N = \bigcup_{k<\omega} N_k$ and $[(H_\omega(M) + N)/H_\omega(M)] = \bigcup_{k<\omega} [(H_\omega(M) + N_k)/H_\omega(M)]$. Moreover,

$$[(H_\omega(M) + N_k)/H_\omega(M)] \cap H_k(M/H_\omega(M))$$

$$= [(H_\omega(M) + N_k)/H_\omega(M)] \cap \frac{H_k(M)}{H_\omega(M)}$$

$$= [(H_\omega(M) + N_k) \cap H_k(M)]/H_\omega(M)$$

$$= [H_\omega(M) + (N_k \cap H_k(M))]/H_\omega(M)$$

$$= 0.$$

Therefore $(H_\omega(M) + N)/H_\omega(M)$ is a submodule of a direct sum of uniserial modules and $M/H_\omega(M)$ is a direct sum of uniserial modules.

Now assume that $M/H_\omega(M)$ is a direct sum of uniserial modules. Since $(N + H_\omega(M))/H_\omega(M)$ is a submodule of $M/H_\omega(M)$, it is strong in $M/H_\omega(M)$.
Therefore \((N + H_\omega(M))/H_\omega(M) = \bigcup_{i<\omega} (K_i/H_\omega(M))\), where
\[H_\omega(M) \subseteq K_i \subseteq K_{i+1} \subseteq N + H_\omega(M)\]
and \(K_i \cap H_i(M) = H_\omega(M)\) for each \(i\). Thus \(N = \bigcup_{i<\omega} (K_i \cap N)\).

Also \(\frac{N + H_\omega(M)}{H_\omega(M)} \simeq \frac{N}{N \cap H_\omega(M)} = \frac{N}{H_\omega(N)}\) and this isomorphism preserve heights such that \(N/H_\omega(N) = \bigcup_{i<\omega} [(K_i \cap N)/H_\omega(N)]\). Therefore
\[K_i \cap N \cap H_i(M) = H_\omega(M) \cap N = H_\omega(N)\]
and \(N/H_\omega(N)\) is strong in \(M/H_\omega(N)\) and the result follows.

Now we study \(h\)-reduced \(QTAG\)-modules whose countably generated submodules are the direct sum of uniserial modules.

Definition 4.3.7. A \(QTAG\)-module is said to be \(\aleph_1\)-\textit{U-module} if its countably generated submodules are the direct sum of uniserial modules. A submodule \(N \subseteq M\) is said to be \textit{strong} \(\aleph_1\)-\textit{U-module} in \(M\) if every countably generated submodule is contained in \(K \subseteq M\), where \(K\) is the direct sum of uniserial modules.

Theorem 4.3.8. Let \(M\) be a \(QTAG\)-module with a submodule \(N\) such that \(M/N\) is \(\aleph_1\)-\textit{U-module}. Then \(M\) is \(\aleph_1\)-\textit{U-module} if and only if \(N\) is strong \(\aleph_1\)-\textit{U-module}.

Proof. Consider a submodule \(K \subseteq M\) such that \(g(K) = \aleph_0\). Now, \(\frac{K + N}{N} \simeq \frac{K}{K \cap N}\) and there may be two cases:

(i) If \(\frac{K}{K \cap N}\) is finitely generated, then \(g(K) = g(K \cap N)\) and since \(N\) is a \(\aleph_1\)-\textit{U-module}, \(K \cap N\) is a direct sum of uniserial modules. Therefore by [45], \(K\) is a direct sum of uniserial modules.

(ii) Otherwise, if \(g\left(\frac{K}{K \cap N}\right)\) is countable and \(M/N\) is a \(\aleph_1\)-\textit{U-module}, then \(\frac{K}{K \cap N}\) is a direct sum of uniserial modules. If \(g(K \cap N)\) is countable then \(K \cap N\) is strong in \(M\) because \(N\) is a \(\aleph_1\)-\textit{U-module} in \(M\). Thus \(K \cap N\) is
strong in K. Otherwise, if $g(K \cap N)$ is finite then it may be embedded in a countably generated submodule of N which is strong in M. Thus $K \cap N$ is strong in M, hence in K, and K is a direct sum of uniserial modules as required. The converse is trivial.

Corollary 4.3.9. Let M be a $QTAG$-module with a submodule N such that M/N is bounded. Then M is \aleph_1-U-module if and only if N is \aleph_1-U-module.

Proof. Since M/N is bounded, $H_n(M) \subseteq N$ for some $n \in \mathbb{N}$, therefore $H_\omega(N) = H_\omega(M)$. Let K be a submodule of M such that K is countably generated. Then $\frac{K + N}{N} \cong \frac{K}{K \cap N}$ is bounded. Since $K \cap N$ is a submodule of N, $K \cap N$ is separable, therefore K is also separable. Thus K is a direct sum of uniserial modules. The converse follows from the fact that submodules of \aleph_1-U-module are also \aleph_1-U-modules.

4.4 HT-Modules

Naji [46] defined HT-modules with the help of small homomorphisms and large submodules. Here we study these modules with a different but equivalent definition of HT-modules.

Definition 4.4.1. A $QTAG$-module M is a HT-module if and only if there exists some $k \in \mathbb{N}$, such that $Soc(H_k(M)) \subseteq K \subseteq M$ if M/K is a direct sum of uniserial modules. Moreover, a submodule $N \subseteq M$ is strongly HT in M if there exists some $k \in \mathbb{N}$ such that $Soc(H_k(M)) \subseteq K$ for $K \subseteq N$ with N/K a direct sum of uniserial modules.

Proposition 4.4.2. Let N be a h-pure submodule of a HT-module M. Then M/N is also a HT-module.

Proof. Let K/N be a submodule of M/N such that $\frac{(M/N)}{(K/N)} \cong \frac{M}{N}$ is a direct sum of uniserial modules. Therefore there exists some $k \in \mathbb{N}$ such that $Soc(H_k(M)) \subseteq K$. Now $(Soc(H_k(M)) + N) \subseteq K$ and $\frac{[Soc(H_k(M)) + N]}{N} \subseteq$
Since N is h-pure in M, $\operatorname{Soc}(H_k(M) + N) = \operatorname{Soc}(H_k(M)) + \operatorname{Soc}(N)$ and
$$\frac{[\operatorname{Soc}(H_k(M) + N) + N]}{N} \subseteq \frac{K}{N}$$. N is also h-pure in $H_k(M) + N \subseteq M$, therefore
$$\operatorname{Soc}(H_k(M/N)) = \operatorname{Soc}([H_k(M) + N]/N) = [\operatorname{Soc}(H_k(M) + N) + N]/N.$$ and $\operatorname{Soc}(H_k(M/N)) \subseteq K/N$. Therefore M/N is a HT-module.

Proposition 4.4.3. Let N be a h-pure submodule of a $QTAG$-module M such that M/N is a direct sum of uniserial modules. Then the following conditions are equivalent:

(i) M is a HT-module;

(ii) N is strongly HT-module in M;

(iii) N is a HT-module and M/N is bounded.

Proof. (i) \Rightarrow (ii) Let N/K be a direct sum of uniserial modules for an arbitrary submodule K of N. Now N/K is h-pure in M/K, thus N/K is strong in M/K and \(\frac{(M/K)}{(N/K)} \simeq \frac{M}{N} \) is also a direct sum of uniserial modules.

Therefore M/K is a direct sum of uniserial modules and so \(\frac{N}{K} \oplus \frac{M}{N} \simeq \frac{M}{K} \). The structure of M ensures the existence of some natural number k such that $\operatorname{Soc}(H_k(M)) \subseteq K$. Therefore $\operatorname{Soc}(H_k(N)) \subseteq K$ and we are done.

(ii) \Rightarrow (i) Let K be an arbitrary but fixed submodule of M such that M/K is a direct sum of uniserial modules. Then \(\frac{(N + K)}{K} \simeq \frac{N}{N \cap K} \) is also a direct sum of uniserial modules. The structure of N ensures the existence of a natural number k such that $\operatorname{Soc}(H_k(N)) \subseteq N \cap K \subseteq K$ and the result follows.

(iii) \Leftrightarrow (ii) By Proposition 4.2.2, if M is a HT-module then M/N is a HT-module. As M/N is a direct sum of uniserial modules, it is bounded and there exists some $k \in \mathbb{N}$ such that $H_k(M) \subseteq N$ and N is strongly HT-module in M. Now we have to show that if N is strongly HT-module in M and N is h-pure in M, then M/N should be bounded. Now there exists a number $k \in \mathbb{N}$ such that $\operatorname{Soc}(H_k(M)) \subseteq N$. Since N is h-pure in M,
$Soc(H_k(M)) = Soc(H_k(N))$. Again $H_k(N)$ is h-pure in $H_k(M)$, therefore $H_k(M) = H_k(N)$, hence $H_k(A) \subseteq N$ and M/N is bounded.

Proposition 4.4.4. Finite direct sum of HT-modules is a HT-module.

Proof. We shall prove that direct sum of two HT-modules is a HT-module. Let M be a $QTAG$-module such that $M = M' \oplus M''$, where M' and M'' are HT-modules. Let N be a submodule of M such that M/N is a direct sum of uniserial modules. Now $\frac{(M' + N)}{N} \cong \frac{M'}{M' \cap N}$ and $\frac{(M'' + N)}{N} \cong \frac{M''}{M'' \cap N}$ are submodules of M/N, therefore they are the direct sums of uniserial modules. Now there are integers m and k such that $H_k(M') \subseteq (M' \cap N) \subseteq N$ and $H_m(M'') \subseteq (M'' \cap N) \subseteq N$. If $n = \max(m, k)$, then

$$Soc(H_n(M)) = Soc(H_n(M')) \oplus Soc(H_n(M''))$$

$$\subseteq Soc(H_k(M')) \oplus Soc(H_m(M''))$$

$$\subseteq K$$

and the result follows.

Proposition 4.4.5. A direct summand of a HT-module M is a HT-module.

Proof. Let M be a $QTAG$ and HT-module. Let M' be a direct summand of M such that $M = M' \oplus M''$. We have to show that there exists a positive integer k such that $Soc(H_k(M')) \subseteq N$ whenever M'/N is a direct sum of uniserial modules. If M'/N is a direct sum of uniserial modules then

$$\frac{M}{N \oplus M''} = \frac{M' \oplus M''}{N \oplus M''} \cong \frac{M'}{N \oplus M''}.$$

Therefore there exists an integer k such that $Soc(H_k(M)) \subseteq (N \oplus M'')$ and

$$Soc(H_k(M')) \subseteq (N \oplus M'') \cap M' = N \oplus (M'' \cap M') = N$$

which is required.
Now we investigate those $QTAG$-modules which do not have an unbounded direct summand which is a direct sum of uniserial modules.

Definition 4.4.6. A $QTAG$-module M is said to be HE-module if it has no unbounded direct summand which is a direct sum of uniserial modules.

Proposition 4.4.7. Let M be a HE-module and N a h-pure submodule of M. Then M/N is a HE-module.

Proof. Suppose M/N has a direct summand of K/N, which is a direct sum of uniserial modules. Therefore $(M/N) = (T/N) \oplus (K/N)$, $T \oplus K = M$ and $K \cap T = N$. Since N is h-pure in M, it is h-pure in K, therefore $K = N \oplus K_1$. This implies that $A = T \oplus K_1$ because

\[
T \cap K_1 = T \cap (K \cap K_1) = (T \cap K) \cap K_1 = N \cap K_1 = 0.
\]

Since $K_1 \simeq K/N$ is a direct sum of uniserial modules, it is bounded and we are done.

Proposition 4.4.8. Let M be a $QTAG$-module with N as a h-pure submodule such that M/N is a direct sum of uniserial modules. Then M is a HE-module if and only if N is a HE-module and M/N is bounded.

Proof. By Proposition 4.4.7, if M/N is HE-module and M/N is a direct sum of uniserial modules then M/N is bounded. Moreover, M can be expressed as $M \simeq N \oplus M/N$. Again finite direct sums and direct summands of HE-modules are again HE-modules and the result follows.

Proposition 4.4.9. Let N be a fully invariant HE-module of M. If M/N is a HE-module then M is also a HE-module.
Proof. Let $M = K \oplus T$. Suppose T is a direct sum of uniserial modules and we may write $T = \bigoplus_{n=0}^{\infty} (\bigoplus_{i \in I_n} x_i R)$ where $x_i R$ is a uniserial module and $d(x_i R) = n$. Now $M = K \oplus \bigoplus_{n=0}^{\infty} (\bigoplus_{i \in I_n} x_i R)$ and

$$N = (N \cap K) \oplus (N \cap T)$$

$$= (N \cap K) \oplus \bigoplus_{n=0}^{\infty} \bigoplus_{i \in I_n} (N \cap x_i R).$$

Therefore $(N \cap T) = \bigoplus_{n=0}^{\infty} \bigoplus_{i \in I_n} (N \cap x_i R)$ and

$$\frac{T + N}{N} \simeq \frac{T}{N \cap T}$$

$$= \frac{\bigoplus_{n=0}^{\infty} \bigoplus_{i \in I_n} x_i R}{\bigoplus_{n=0}^{\infty} \bigoplus_{i \in I_n} (N \cap x_i R)}$$

$$\simeq \bigoplus_{n=0}^{\infty} \bigoplus_{i \in I_n} [x_i R/(N \cap x_i R)]$$

are direct sum of uniserial modules.

Now $M/N = [(K + N)/N] \oplus [(T + N)/N]$ and

$$(K + N) \cap (T + N) = N + K \cap (T + N)$$

$$= N + K \cap (T + N \cap K)$$

$$= N + (N \cap K) + (K \cap T)$$

$$= N.$$

Since $(T + N)/N$ is a direct sum of uniserial modules it is bounded hence T is bounded as $T \cap N$ is bounded.

4.5 ω_1-Separable Modules

The cardinality of the minimal generating set of a module M, $g(M)$ plays a very important role in the study of $QTAG$-modules. Here we study ω_1-separable and weakly ω_1-separable $QTAG$-modules. We start with the following:
Definition 4.5.1. A $QTAG$-module M is said to be ω_1-separable if each of its countably generated submodules is contained in a direct summand of M which is a direct sum of uniserial modules.

Proposition 4.5.2. Let N be a countably generated nice submodule of the $QTAG$-module M. If M is ω_1-separable then M/N is ω_1-separable.

Proof. Since a ω_1-separable module is separable. M is separable and by [32], M/N is also separable. Let K/N be a submodule of M/N such that $g(K/N) = \aleph_0$. Then $g(K) = \aleph_0$ and there exists a direct summand T of M containing K such that $g(T) = \aleph_0$ and $M = T \oplus M_1$. Now $\frac{M}{N} = \frac{T}{N} \oplus \frac{(M_1 + N)}{N}$ and $T \cap (M_1 + N) = N + (T \cap M_1) = N$. But $K/N \subseteq T/N$ and $g(T/N) = \aleph_0$ because $\aleph_0 = g(K/N) \leq g(T/N) \leq g(T) = \aleph_0$ and T/N is a direct sum of uniserial modules.

We now generalize ω_1-separable modules to weakly ω_1-separable modules and investigate their properties.

Definition 4.5.3. A separable $QTAG$-module M is said to be weakly ω_1-separable if for all countably generated submodules N of M, $g(\bigcap_{k<\omega} (H_k(M) + N)) = \aleph_0$.

Theorem 4.5.4. Let N be a countably generated nice submodule of a separable module M. Then M is weakly ω_1-separable if and only if M/N is weakly ω_1-separable.

Proof. Consider the nice submodule N in the separable $QTAG$-module M such that M/N is separable. Let T/N be a submodule of M/N such that $g(T/N) = \aleph_0$. Thus $g(T) = \aleph_0$ and $g(\bigcap_{k<\omega} (H_k(M) + T)) = \aleph_0$.

77
Now,

\[\aleph_0 = g(T/N) \]

\[\leq g(\bigcap_{k<\omega} (H_k(M/N) + T/N)) \]

\[= g(\bigcap_{k<\omega} [(H_k(M) + T)/N]) \]

\[= g(\bigcap_{k<\omega} [(H_k(M) + T)/T]) \]

\[\leq g(\bigcap_{k<\omega} (H_k(M) + T)) = \aleph_0. \]

Therefore \(g(\bigcap_{k<\omega} (H_k(M/N) + T/N)) = \aleph_0 \) and \(M/N \) is weakly \(\omega_1 \)-separable.

For the converse, consider a countably generated submodule \(K \subseteq M \). Since \(M/N \) is separable, \(N \) is nice in \(M \) and \(H_\omega(M) \subseteq N \). If \(g\left(\frac{K + N}{N}\right) < \omega \), then it is nice in \(M/N \). Since \(N \) is nice in \(M \), \(K + N \) is nice in \(M \). Therefore \(\bigcap_{k<\omega} (H_k(M) + K + N) = H_\omega(M) + K + N = K + N \) and \(g(\bigcap_{k<\omega} (H_k(M) + K + N)) = g(K + N) = \aleph_0 \) and so \(g(\bigcap_{k<\omega} (H_k(M) + K)) = \aleph_0 \), since \(K \subseteq \bigcap_{k<\omega} (H_k(M) + K) \) and the result follows. Otherwise, if \(g\left(\frac{K + N}{N}\right) = \aleph_0 \), then

\[g(\bigcap_{k<\omega} [H_k(M/N) + (K + N)/N]) = g(\bigcap_{k<\omega} [(H_k(M) + N)/N + (K + N)/N]) \]

\[= g(\bigcap_{k<\omega} (H_k(M) + K + N)/N)) \]

\[= \aleph_0 \text{ and } g(N) \]

\[= g(\bigcap_{k<\omega} (H_k(M) + K + N)). \]

Since \(K \subseteq \bigcap_{k<\omega} (H_k(M) + K) \) and \(g(K) = g(N) = \aleph_0 \), implying that

\[g(\bigcap_{k<\omega} (H_k(M) + K)) = \aleph_0. \]
We conclude with the remark that finite direct sums, direct summands and submodules of ω_1-separable modules (or weakly ω_1-separable modules) are again ω_1-separable (or weakly ω_1-separable).