GLOSSARY OF THE GENERAL NOTATIONS AND ABBREVIATIONS

S : Set of all possible states of the system

E : Set of regenerative states

E : Complementary set of E i.e. set of non-regenerative states

q_{i,j}(\cdot), Q_{i,j}(\cdot) : p.d.f. and c.d.f. of one step or direct transition time from state \(S_i \in E \) to \(S_j \in E \).

P_{i,j} : Steady state transition probability from state \(S_i \) to \(S_j \) such that

\[P_{i,j} = \lim_{t \to x} Q_{i,j}(t) = \int_0^\infty q_{i,j}(u) \, du \]

q^{(k)}_{i,j}(\cdot), Q^{(k)}_{i,j}(\cdot) : p.d.f. and c.d.f. of transition time from state \(S_i \in E \) to \(S_j \in E \) via non-regenerative state \(S_k \in \bar{E} \)

P^{(k)}_{i,j} : Steady state transition probability from state \(S_i \) to \(S_j \) via non-regenerative state \(S_k \) such that

\[P^{(k)}_{i,j} = \lim_{t \to x} Q^{(k)}_{i,j}(t) = \int q^{(k)}_{i,j}(u) \, du \]

q^{(k,\cdot)}_{i,j}(\cdot), Q^{(k,\cdot)}_{i,j}(\cdot) : p.d.f. and c.d.f. of transition time from state \(S_i \in E \) to \(S_j \in \bar{E} \) via non-regenerative states \(S_k \in \bar{E} \) and \(S_l \in \bar{E} \).

P^{(k,\cdot)}_{i,j} : Steady state transition probability from state \(S_i \) to \(S_j \) via non-regenerative states \(S_k \) and \(S_l \) such that

\[P^{(k,\cdot)}_{i,j} = \lim_{t \to x} Q^{(k,\cdot)}_{i,j}(t) = \int q^{(k,\cdot)}_{i,j}(u) \, du \]

Q_{i,j,y} : Conditional p.d.f. and c.d.f. of transition time
from state S_i to S_j given that the system entered after a Sojourn for time x in the preceding state.

$P_{i,j|\lambda}$: Steady state transition probability of the transition from S_i to S_j given that the system entered in state S_i at epoch x.

$$P_{i,j|\lambda} = \lim_{t \to \infty} Q_{i,j|\lambda}(t) = \int q_{i,j|\lambda}(u)\,du$$

$q^{(k)}_{i,j|\lambda}(\cdot), Q^{(k)}_{i,j|\lambda}(\cdot)$: Conditional p.d.f. and c.d.f. of transition time from state S_i to S_j via non-regenerative state S_k given that the system entered after a Sojourn per time x in the proceeding state.

$p^{(k)}_{i,j|\lambda}$: Steady state transition probability of the transition from S_i to S_j via non-regenerative state S_k given that the system entered in state S_i at epoch x.

$$p^{(k)}_{i,j|\lambda} = \lim_{t \to \infty} Q^{(k)}_{i,j|\lambda}(t) = \int q^{(k)}_{i,j}(u)\,du$$

$\phi(t)$: c.d.f. of the first passage time from regenerative state S_i to S_j a failed state

$A_i(t)$: Probability that system is in up state at instant t given that the system entered regenerative state S_i at $t = 0$.

$M_i(t)$: Probability that system up initially in regenerative state S_i at time t without passing through any other regenerative state or returning to itself through one or more non-regenerative states.
\(B_i(t) \) : Probability that the repairman is busy at instant
to, given that the system started from
regenerative state \(S_i \) at \(t = 0 \).

\(B_{IR}(t) \) : Probability that the repairman is busy in
replacing failed unit at instant \(t \), given that the
system entered regenerative state \(S_i \) at \(t = 0 \).

\(W_i(t) \) : Probability that the repairman is busy in
regenerative state \(S_i \) at time \(t \) without passing
through any other regenerative state.

\(RP_i(t) \) : expected number of replacements in \((0, t]\), given
that the system started from regenerative state \(S_i \)
at \(t = 0 \).

\(V_i(t) \) : expected number of visits by the repairman in \((0, t]\), given
that the system started from the
regenerative state \(S_i \) at \(t = 0 \).

\(\mu_x \) : Mean Sojourn time in state \(S_i \) given that the unit
under repair in state \(S_i \) entered into F-mode after
an operation of time \(x \).

\(\mu_i \) : Mean sojourn time in state \(S_i \) before transiting to
any other state.

\(m_{i,j}, m_{h,j}^{(k)} \) : Contribution to mean sojourn time in
regenerative state \(S_i \) without visiting to any other
state, visiting state \(k \) only once.

\(C/P \) : Expected total cost/profit incurred in \((0, t)\)

\(* \) : Symbol for Laplace Transform.
e.g., \(f^*(s) = \int_0^\infty e^{-st} f(t)dt \)

** : Symbol for Laplace-Stieltjes transform,

e.g. \(F^{**}(s) = \int_0^\infty e^{-st} d F(t) \)

\(\odot \) : Symbol for Laplace Convolution,

e.g. \(f(t) \odot g(t) = \int_0^t f(u) g(t-u)du \)

\(\ast \) : Symbol for Stieltjes convolution,

e.g. \(F(t) \ast G(t) = \int_0^1 G(t-u) d F(u) \)

L.T. : Laplace Transform

L.S.T. : Laplace Stieltjes Transform