Chapter – 1
GENERAL INTRODUCTION

1.1. Nanomaterials
 1.1.1. Titanium dioxide
 1.1.2 Carbon nanotubes
 1.1.3. Graphene

1.2. Nanotechnology

1.3. Conducting polymers
 1.3.1. Polyaniline
 1.3.1.1. Synthesis of Polyaniline
 1.3.1.2. Properties of Polyaniline

1.4. Electrical conduction in conducting polymers
 1.4.1. Band theory of conduction
 1.4.2. Hopping and tunneling
 1.4.3. Percolation theory

1.5. Doping of conducting polymers
 1.5.1. Doping process
 1.5.1.1. Chemical doping by charge-transfer
 1.5.1.2. Electrochemical doping
 1.5.1.3. Self doping
 1.5.1.4. Radiation doping
 1.5.1.5. Doping by acid-base chemistry
 1.5.2. Dedoping or undoping or electrical neutralization or electrical compensation

1.6. Nanocomposites
 1.6.1. Classification of nanocomposites
 1.6.2. Polymer nanocomposites
1.6.3. Properties of nanocomposites 31
1.6.4. Preparation of nanocomposites 33
 1.6.4.1. Direct/melt mixing 33
 1.6.4.2. Solution mixing 34
 1.6.4.3. In-situ polymerization 34
 1.6.4.4. Emulsion polymerisation 36
1.7. Degradation and stabilization 36
1.8. Applications of nanocomposites 42

CHAPTER 2
REVIEW OF LITERATURE

2.1. General introduction 44
2.2. Polyaniline:TiO$_2$ nanocomposites 45
2.3. Polyaniline:CNT nanocomposites 64
2.4. Polyaniline:GR nanocomposites 72

CHAPTER 3
THERMAL STABILITY, ELECTRICAL CONDUCTIVITY AND AMMONIA SENSING STUDIES ON p-TOLUENE SULFONIC ACID DOPED POLYANILINE:TITANIUM DIOXIDE (pTSA/PANI:TiO$_2$) NANOCOMPOSITE

3.1. Introduction 74
3.2. Experimental 75
 3.2.1. Materials 75
 3.2.2. Preparation of pTSA/Pani and pTSA/Pani:TiO$_2$ nanocomposites 75
 3.2.3. Characterization and studies 76
3.3. Results and discussions 78
 3.3.1. FTIR spectroscopic studies 78
 3.3.2. X-ray diffraction studies 78
 3.3.3. Scanning electron micrograph studies 81
 3.3.4. Thermogravimetric analysis studies 81
 3.3.5. Electrical conductivity studies 84
 3.3.6. Ammonia vapor sensing studies of pTSA/Pani:TiO$_2$ nanocomposites 87
3.4. Conclusions 96
CHAPTER 4
THERMAL STABILITY OF HCl-DOPED-POLYANILINE AND TiO$_2$ NANOPARTICLES BASED NANOCOMPOSITES

4.1. Introduction 97
4.2. Experimental 98
 4.2.1. Materials 98
 4.2.2. Preparation of Pani and Pani:TiO$_2$ nanocomposite films 99
 4.2.3. Characterization 99
4.3. Results and discussion 101
 4.3.1. FTIR spectroscopic studies 101
 4.3.2. X-ray diffraction studies 102
 4.3.3. Scanning electron micrograph studies 105
 4.3.4. Thermogravimetric analysis studies 105
 4.3.5. Electrical conductivity studies 108
 4.3.6. Stability under isothermal ageing conditions 110
 4.3.7. Stability under cyclic ageing conditions 110
4.4. Conclusions 117

CHAPTER 5
ELECTRICAL PROPERTIES AND AMMONIA VAPOR SENSING BEHAVIOR OF THE COMPOSITE BASED ON NANOSTRUCTURED POLYANILINE AND MULTI-WALLED CARBON NANOTUBES

5.1. Introduction 118
5.2. Experimental 119
 5.2.1. Chemicals and instrumentation 119
 5.2.2. Synthesis of Pani and Pani:MWCNT nanocomposites 119
 5.2.3. Studies and measurements 121
5.3. Results and discussion 122
 5.3.1. Preparation of Pani and Pani:MWCNT nanocomposites 122
 5.3.2. FTIR spectroscopic studies 124
 5.3.3. X-ray diffraction studies 124
 5.3.4. Thermogravimetric analysis studies 127
 5.3.5. Raman spectra 127
5.3.6. Scanning electron micrograph studies 130
5.3.7. Transmission electron micrograph studies 130
5.3.8. Electrical conductivity studies 133
5.3.9. Isothermal studies 133
5.3.10. Cyclic studies 137
5.3.11. Ammonia vapor sensing studies of Pani:MWCNT nanocomposite 141
5.4. Conclusions 146

CHAPTER 6 147-169
THERMAL STABILITY AND ELECTRICAL CONDUCTIVITY OF DODECYL-BENZENE-SULFONIC-ACID DOPED NANOCOMPOSITES OF POLYANILINE WITH MULTI-WALLED CARBON NANOTUBES

6.1. Introduction 147
6.2. Experimental 148
6.2.1. Materials 148
6.2.2. Preparation of Pani and Pani:MWCNT nanocomposites 148
6.2.3. Characterization 149
6.3. Results and discussion 151
6.3.1. Synthesis of Pani and Pani:MWCNT nanocomposite 151
6.3.2. FTIR spectroscopic studies 151
6.3.3. X-ray diffraction studies 153
6.3.4. Scanning electron micrograph studies 153
6.3.5. Transmission electron micrograph studies 153
6.3.6. Thermogravimetric analysis studies 157
6.3.7. Electrical conductivity studies 157
6.3.8. Isothermal studies 161
6.3.9. Cyclic studies 161
6.4. Conclusions 169

CHAPTER 7 170-189
NANOCOMPOSITES OF POLYANILINE WITH MULTI-WALLED CARBON NANOTUBES AND GRAPHENE: A COMPARATIVE STUDY

7.1. Introduction 170
7.2. Experimental

7.2.1. Materials and methods

7.2.2. Preparation of Pani, Pani:MWCNT and Pani:GR nanocomposite films

7.2.3. Instrumentation

7.3. Results and discussion

7.3.1. Preparation of Pani, Pani:MWCNT and Pani:GR films

7.3.2. FTIR spectroscopic studies

7.3.3. X-ray diffraction studies

7.3.4. Scanning electron micrograph studies

7.3.5. Thermogravimetric analysis studies

7.3.6. Electrical conductivity studies

7.3.7. Isothermal studies

7.3.8. Cyclic studies

7.4. Conclusions

REFERENCES 190-215

PUBLICATIONS 216-221