<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Illustration</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Normalized dynamic and static power dissipation for (W/Lg=3) device. Data is based on the ITRS [16] and normalized to the year 2001’s figure [2].</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Power requirements of high performance microprocessor chip and handheld products as per ITRS [16].</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic of inverter with voltage and current waveforms.</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Short circuit leakage current of inverter at 32 nm technology node and V_{DD}=0.4V.</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Leakage current mechanisms in an NMOS transistor.</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>NMOS transistor with bias voltages.</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>I-V characteristics of NMOS transistor.</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic of a MOSFET with its capacitance components (intrinsic and parasitic).</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>Effect of technology scaling on total gate capacitance in subthreshold (V_{DD}=0.2V) and superthreshold region (V_{DD}= nominal).</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>Effect of T_{OX} scaling on subthreshold slope at V_{DD}=0.2V and 32 nm technology node.</td>
<td>24</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic of testbench used for simulation.</td>
<td>26</td>
</tr>
<tr>
<td>2.12</td>
<td>Energy delay tradeoff for IUT at 32 nm technology node.</td>
<td>26</td>
</tr>
<tr>
<td>2.13</td>
<td>Power dissipation as a function of operating frequency.</td>
<td>27</td>
</tr>
<tr>
<td>2.14</td>
<td>(a) CMOS inverter and (b) Butterfly curve at 32 nm technology node used for noise margin estimation.</td>
<td>28</td>
</tr>
<tr>
<td>2.15</td>
<td>Effect of 15% V_{th} variation on transient response of an inverter.</td>
<td>30</td>
</tr>
<tr>
<td>2.16</td>
<td>(3 sigma/mean) delay variability due to 15% V_{th} variation.</td>
<td>30</td>
</tr>
<tr>
<td>2.17</td>
<td>Delay variation due to 15% V_{DD} variation.</td>
<td>31</td>
</tr>
<tr>
<td>2.18</td>
<td>I-V characteristics of NMOS at different gate overdrive voltage and temperature.</td>
<td>32</td>
</tr>
</tbody>
</table>
2.19 Effect of temperature variation on I_{ON}/I_{OFF} ratio. 32
2.20 Effect of temperature variation on delay. 32
2.21 Effect of temperature variation SNM of inverter. 33
3.1 (a) Abstract view of FPGA, (b) Basic logic element (BLE). 38
3.2 Island-style FPGA architecture. 38
3.3 A generic SB implementation using six programmable pass-
transistors. 41
3.4 I/O voltage waveforms for SB at different nodes. 43
3.5 Leakage current as a function of supply voltage. 43
3.6 Proposed FPGA routing switch box. 43
3.7 Test setup used for performance analysis of switch box. 44
3.8 Power dissipation as a function of supply voltage for various SB

topologies. 45
3.9 Delay as a function of supply voltage for various SB topologies. 45
3.10 PDP as a function of supply voltage for various SB topologies. 46
3.11 Delay as a function of capacitive load. 46
3.12 Standby leakage power comparison. 46
3.13 Variability(σ/μ) of PDP for different supply voltage. 48
3.14 Variation in delay of generic SB in MCW. 48
3.15 Variation in delay of proposed SB in MCW. 49
3.16 Fluctuation in output voltage due to PVT variations in MCW. 49
3.17 Comparision of delay probability density function. 50
4.1 (a) ED curve for FO4 inverter testbench
(b) Energy -delay trade off in subthreshold region.
4.2 FPGA interconnect architecture. 54
4.3 Abstract view of traditional routing switch. 55
4.4 Breakdown of (a) delay and (b) energy in simulation of FPGA at 0.4V
subthreshold voltage [7]. 57
4.5 Monte Carlo simulation window for delay variation [7]. 57
4.6 (a) Base line simulation setup
(b) Component blocks of FPGA interconnect resource
(c) Multiplexer logic implementation.
4.7 Buffer and wire resistance trade off in subthreshold region. 61
4.8 Delay as function of V_{DD} for LIR at different repeater size. 61
4.9 PDP as function of V_{DD} for LIR at different repeater size. 61
4.10 Power dissipation as function of V_{DD} for LIR at different repeater size. 62
4.11 Comparison of logic and interconnect delay. 62
4.12 Comparison of mixed CNT bundle and Cu as interconnect in LIR. 63
4.13 Delay and PDP as a function of threshold voltage for DIR. 65
4.14 Delay and PDP as a function of oxide thickness for DIR. 66
4.15 PDP as a function of device width for DIR. 66
4.16 Drive current as a function of supply voltage. 66
4.17 Delay as a function of supply voltage for DIR. 67
4.18 PDP as a function of supply voltage for DIR. 68
4.19 Delay as a function of supply voltage for HIR. 68
4.20 PDP as a function of supply voltage for HIR. 68
4.21 Delay as a function of supply voltage for LIR. 69
4.22 PDP as a function of supply voltage for LIR. 69
4.23 Comparison of output voltage variation for conv. and opt. DIR. 70
5.1 (a) Single-wall carbon nanotube and (b) Multi-wall carbon nanotube. 73
5.2 Isolated SWCNT with diameter ‘d’ over a ground plane at a distance ‘y’. 73
5.3 Equivalent circuit model of SWCNT. 76
5.4 Mixed CNT bundle geometry. 78
5.5 Equivalent circuit model for SWCNT interconnect. 82
5.6 Delay comparison of Cu and SWCNT interconnects at moderate subthreshold and deep subthreshold region (inset figure) at aspect ratio (AR) = 2. 83
5.7 Interconnect delay improvement offered by SWCNT over Cu at different interconnect length and operating points (AR=2). 84
5.8 EDP improvement offered by SWCNT over Cu at different interconnect length and operating points (AR=2). 84
5.9 Delay improvement offered by Cu and mixed CNT bundle over SWCNT interconnect at moderate subthreshold region and SWCNT over Cu and mixed CNT bundle in deep subthreshold region (inset figure) at AR= 3. 86
5.10 Effect of V_{DD} scaling on interconnects delay and EDP (inset figure) improvement offered by Cu and mixed CNT bundle interconnect over SWCNT interconnects at AR= 3.

5.11 Schematic diagram of interconnect geometry under consideration for performance comparison.

5.12 Resistance as a function of tube density and diameter.

5.13 Capacitance as a function of tube density and diameter.

5.14 Delay as a function of tube density and diameter in moderate subthreshold region.

5.15 EDP as a function of tube density and tube diameter in moderate subthreshold region.

5.16 Delay and EDP as function of tube density and tube diameter at $V_{DD}=0.2V$.

5.17 Capacitance as a function of AR.

5.18 Delay as a function of interconnects length.

5.19 Schematic of equivalent circuit to model crosstalk between adjacent wires.

5.20 Snapshot of signal transition due to aggressor transitions for Cu interconnect.

5.21 Snapshot of signal transition due to aggressor transitions for mixed CNT interconnect.

6.1 The test structures used for interconnect analysis.

6.2 Total path delay as a function of interconnects length.

6.3 Driver and interconnect delay as a function of interconnect length.

6.4 Delay contributions for tapered buffering technique.

6.5 Effect of repeater insertion on total path delay.

6.6 Effect of V_{th} scaling on PDP.

6.7 Effect of V_{th} scaling on delay ratio for superthreshold and subthreshold operating region.

6.8 Effect of T_{OX} scaling on S and C_g.

6.9 Effect of Tox scaling on PDP.

6.10 Effect of Tox scaling on gate leakage current and static power dissipation.
6.11 Effect of V_{th} and T_{ox} scaling on dynamic energy. 107
6.12 Effects of device optimization on interconnects performance. 107
6.13 Effect of interconnect spacing on delay. 109
6.14 Delay as a function of interconnect width and driver size for conventional and proposed technique. 109
6.15 PDP as a function of interconnect width and driver size for conventional and the proposed technique. 110
6.16 Delay and PDP comparison for conv. and DTMOS driver. 110
6.17 Effect of V_{th} variation ($3\sigma=15\%$) on delay for conv. and opt. device. 112
6.18 Transient response comparison under V_{th} variation ($3\sigma=15\%$) at $L=2$ mm for conv. and opt. device. 113
6.19 Effect of V_{th} variation ($3\sigma=15\%$) on power dissipation for conv. and opt. driver. 113
6.20 Effect of temperature on delay at different V_{DD}. 115
6.21 Effect of temperature on interconnects delay and P_{av} for different driver size at $L=2$ mm. 115
6.22 Effect of wire spacing on rise and fall time delay. 117
6.23 Snapshots of voltage across victim wire due to aggressors transitions. 118
6.24 Effects of wire spacing on rise and fall time delay of victim wire. 118
7.1 Energy-Band structure of (a) metallic (5, 5) and (b) semiconducting (10,0) CNT. 122
7.2 (a) Structure of SWCNT and (b) Three-level hierarchy of CNFET model. 123
7.3 Schematic of N-channel CNFET. 125
7.4 Ids vs. Vds of N-CNFET for (13, 0) chirality. 125
7.5 The structure of the subcircuit model of a FinFET device: (a) Top view of front and back gate; (b) Three dimensional view; (c) Subcircuit symbol of DG FinFET. 127
7.6 I-V characteristics of 4T and 3T FinFET device. 127
7.7 ‘C_g’ and ‘S’ as a function of inter CNT pitch and number of tubes. 129
7.8 Delay and dynamic energy as a function of inter CNT pitch and number of tubes. 129
7.9 Power dissipation as a function of inter CNT pitch and number of...
tubes.
7.10 VTC comparison of CNFET and FinFET.
7.11 Comparison of Cg and S for 32 nm CNFET and FinFET.
7.12 Comparison of GLP and S for 32 nm CNFET and FinFET.
7.13 Effect of TOx variation on ‘Cg’ and ‘S’ of 32 nm CNFET and FinFET.
7.14 Effect of Lg variation on ‘Cg’ and ‘S’ of 32nm CNFET and FinFET.
7.15 Effect of TOx variation on delay of 32 nm CNFET and FinFET based inverter.
7.16 Effect of TOx variation on PDP of 32 nm CNFET and FinFET based inverter.
7.17 Effect of Lg variation on delay of 32 nm CNFET and FinFET inverter.
7.18 Effect of Lg variation on PDP of 32 nm CNFET and FinFET inverter.
8.1 Cross-section view of a MOS transistor.
8.2 Simulation structure of 45nm nMOS.
8.3 Flow chart for calibration methodology used in simulation.
8.4 Effect of TOX scaling and gate leakage v.s Intel technology.
8.5 Gate capacitance as a function of VGS for 45nm NMOS.
8.6 Subthreshold slope as a function of Lg and TOX.
8.7 Gate capacitance as a function of Lg and TOX.
8.8 Subthreshold slope and ION/IOFF as a function of Lg and TOX.
8.9 Drain current as a function of channel doping at different halo doping.
8.10 Subthreshold slope as a function of channel doping.
8.11 Drain current as function of halo doping.
8.12 Subthreshold slope as a function of halo doping and channel doping.
8.13 Subthreshold slope as a function of supply voltage.