CONTENTS

1. **INTRODUCTION**

 1.1 Introduction 1
 1.2 Classification of corrosion process 3
 1.3 Corrosion mechanism 4
 1.4 Classifications of the atmospheric environment 16
 1.5 Conditions for atmospheric corrosion 17
 1.6 Composition of surface electrolyte 22
 1.7 Corrosion - period of exposure 29
 1.8 Composition of corrosion products 30
 1.9 Objectives of the present study 34

2. **LITERATURE REVIEW**

 2.1 Introduction 36
 2.2 Technical publications 36
 2.3 Degradation of materials 37
 2.4 Atmospheric factors 37
 2.5 Work done : World Wide 45
 2.6 Materials of corrosion 50
 2.7 Evaluation of protective schemes 52
 2.8 Corrosion map 53

3. **MATERIALS AND METHODS**

 3.1 Introduction 57
 3.2 Places of study 57
 3.3 Period of study 61
 3.4 Selected materials 63
 3.5 Procedures for field study 66
3.6 Analysis of corroded product
 3.6.1 Mass loss method
 3.6.2 FTIR - spectrometer
 3.6.3 SEM analysis
3.7 Atmospheric parameters
 3.7.1 Instrumentation
 3.7.1.a. Spectrophotometer
 3.7.2 Air sampler
 3.7.3 Modified Jacobs and Hochheiser sodium arsenite method for analysis of NO₂
 3.7.4 Pararosaniline method for determination of Sulphur dioxide (SO₂)
 3.7.5 Wet Candle method (Chloride)
3.8 Meteorological data
3.9 Statistical method
3.10 Anti-Corrosive method – coating systems
 3.10.1 Non metallic coatings
 3.10.2 Inorganic coatings
 3.10.3 Organic coatings
4. RESULTS AND DISCUSSIONS
4.1 Introduction
4.2 Atmospheric corrosion behavior of metals/alloy in different environments for various periods.
 4.2.1 Mild steel
 4.2.2 Copper
 4.2.3 Aluminium
 4.2.4 Atmosphere corrosive categories
 4.2.5 Durability factor
4.2.6 Concluding remarks 141

4.3 Seasonal variations in rates of corrosion of selected metals/alloy 143
4.3.1 Ranipet 143
4.3.2 Cuddalore 148
4.3.3 Tranquebar 152
4.3.4 Mayiladuthurai 156
4.3.5 Concluding remarks 160

4.4 FTIR Analysis 161
4.4.1 FTIR Analysis of corroded products of Mild steel – Ranipet. 162
4.4.2 Cuddalore 167
4.4.3 Tranquebar 170
4.4.4 Mayiladuthurai 174
4.4.5 Concluding remarks 179
4.4.6 FTIR Analysis of corroded products of Copper – Ranipet 180
4.4.7 Cuddalore 184
4.4.8 Tranquebar 188
4.4.9 Mayiladuthurai 192
4.4.10 Concluding remarks 196
4.4.11 FTIR Analysis of corroded product of aluminium – Ranipet 197
4.4.12 Cuddalore 200
4.4.13 Tranquebar 203
4.4.14 Mayiladuthurai 207
4.4.15 Concluding remarks 210

4.5 Multiple regression analysis 210
4.5.1 Location I (Ranipet) 212
4.5.2 Location II (Cuddalore) 215
4.5.3 Location III (Tranquebar) 218
4.5.4 Location IV (Mayiladuthurai) 220
4.5.5 Concluding remarks 222

4.6 SEM ANALYSIS (Scanning Electron Microscope) 223
4.7 Anti – Corrosive methods – protective coatings 227

5. CONCLUSION 231

References