TABLE OF CONTENTS

Acknowledgement
List of Figures
List of Tables
List of Publications
Abstract

CHAPTER 1 INTRODUCTION
1.1 Introduction
1.2 Facts related to use of electricity by personal computers
1.3 Power consumption by personal computers
1.4 Eco-labeling
1.5 Power management in personal computers
 1.5.1 Advanced power management
1.6 Power saving modes and problems with power management
1.7 Energy-sustainable computing
 1.7.1 Energy sustainability
1.8 Organization of the thesis

CHAPTER 2 MINIMIZING ENERGY CONSUMPTION
2.1 Introduction
2.2 Drawbacks of available power scheme in operating system
2.3 Power aware system design
2.4 Power measuring and profiling
 2.4.1 Power model
2.5 Simulation based power management approaches
2.6 Hardware-based power management approaches
 2.6.1 Power measurement with power meters
 2.6.2 Power measurement by specially designed devices

2.6.3 Power measurement by integrating sensors
2.6.4 Power management by using benchmarks

2.7 Software-based power management approaches
2.7.1 Dynamic power management scheme

2.8 Dynamic voltage and frequency scaling
2.8.1 CPU utilization algorithms

2.9 Designing power-efficient architectures
2.9.1 Programming approaches for power efficient architecture

2.10 Conclusion

CHAPTER 3 ENERGY SUSTAINABLE FRAMEWORK
3.1 Introduction
3.2 Energy and power consumption modeling
3.3 User centric energy management
3.4 Proposed energy sustainable framework
3.4.1 Internal view of the framework
3.5 Comparison of proposed framework with existing power schemes
3.5.1 Existing scenario of power scheme in windows operating system
3.5.2 Comparison with swift mode
3.5.3 Comparison with exhaustive mode

3.6 Conclusion

CHAPTER 4 ENERGY SUSTAINABLE ALGORITHMS
4.1 Introduction
4.2 Proposed swift mode algorithm
4.3 Proposed energy sustainable snapshot technique
4.3.1 ESSA framework
4.3.2 ESSA algorithm

4.4 Experimental methodology