ABSTRACT

1 INTRODUCTION 1-7
 1.1 Dielectric Polansation
 1.2 Brief Literature Survey
 1.3 Selection of the systems
 References

2 THEORIES OF DIELECTRICS 8-36
 Introduction
 2.1 Theories of Dielectric Relaxation
 2.2 Theories of Static Permittivity
 2.2.1 Clausius Mosotti Equation
 2.2.2 Debye Theory of static equation
 2.2.3 Onsager Theory
 2.3 Frohlich’s Theory
 2.4 Theories of Dynamic Permittivity
 2.4.1 Debye Model
 2.4.2 Cole-Cole Model
 2.4.3 Davidson-Cole Model
 2.4.4 Havriliak-Negami Model
 2.5 Dielectric Parameters Related to Molecular Behavior
 2.5.1 Bruggeman Factor
 2.5.2 Excess Parameters
 2.5.3 Thermodynamic Parameter
 References

3 EXPERIMENTAL TECHNIQUE 37-65
 3.1 Introduction
 3.2 Experimental setup
 3.2.1 HP 54750A Sampling Oscilloscope
3.2.2 HP 54754A TDR Plug in Module
3.2.3 Sample Cell
3.2.4 Temperature Bath
3.3 TDR Fundamental
3.3.1 Propagation of signal along transmission Line
3.3.2 Step Reflection from Purely Resistive Load
3.3.3 Step Reflection from Complex Loads
3.4 Sources of Error in TDR Measurements
3.3.4 Step Generator
3.3.5 Oscilloscope
3.3.6 Cables and Connectors
3.3.7 Selection of time windows
3.4 Error Minimization
3.5 Experimental Procedure and Data Analysis
3.5.1 Fourier Transformation
3.5.2 Bilinear Calibration method
3.6 Determination of Effective Pin Length
References

4. Result and Discussion 66-100
4.1 Methanol + 2-Methoxyethanol mixture
4.1.1 Permittivity and Relaxation Time
4.1.2 Excess Permittivity and Excess Relaxation Time
4.1.3 Bruggeman Factor
4.1.4 Kirkwood co-relation Factor
4.1.5 Thermodynamics Parameters
4.2 Methanol + 2-Ethoxyethanol mixture
4.2.1 Permittivity and Relaxation Time
4.2.b Excess Permittivity and Excess Relaxation Time
4.2.c Bruggeman Factor
4.2.d Kirkwood co-relation Factor
4.2.e Thermodynamics Parameters
4.3 Methanol + 2-Butoxyethanol mixture
4.3.a Permittivity and Relaxation Time
4.3.b Excess Permittivity and Excess Relaxation Time
4.3.c Bruggeman Factor
4.3.d Kirkwood co-relation Factor
4.3.e Thermodynamics Parameters

5 Chapter

5.1 Ethanol + 2-Methoxyethanol mixture
5.1.a Permittivity and Relaxation Time
5.1.b Excess Permittivity and Excess Relaxation Time
5.1.c Bruggeman Factor
5.1.d Kirkwood co-relation Factor
5.1.e Thermodynamics Parameters
5.2 Ethanol + 2-Ethoxyethanol mixture
5.2.a Permittivity and Relaxation Time
5.2.b Excess Permittivity and Excess Relaxation Time
5.2.c Bruggeman Factor
5.2.d Kirkwood co-relation Factor
5.2.e Thermodynamics Parameters
5.3 Ethanol + 2-Butoxyethanol mixture
5.3.a Permittivity and Relaxation Time
5.3.b Excess Permittivity and Excess Relaxation Time
5.3.c Bruggeman Factor
5.3.d Kirkwood co-relation Factor
5.3.e Thermodynamics Parameters
Chapter 6

6.1 1-Propanol + 2-Methoxyethanol mixture
 6.1a Permittivity and Relaxation Time
 6.1b Excess Permittivity and Excess Relaxation Time
 6.1c Bruggeman Factor
 6.1d Kirkwood co-relation Factor
 6.1e Thermodynamics Parameters

6.2 1-Propanol + 2-Ethoxyethanol mixture
 6.2a Permittivity and Relaxation Time
 6.2b Excess Permittivity and Excess Relaxation Time
 6.2c Bruggeman Factor
 6.2d Kirkwood co-relation Factor
 6.2e Thermodynamics Parameters

6.3 1-Propanol + 2-Butoxyethanol mixture
 6.3a Permittivity and Relaxation Time
 6.3b Excess Permittivity and Excess Relaxation Time
 6.3c Bruggeman Factor
 6.3d Kirkwood co-relation Factor
 6.3e Thermodynamics Parameters

Chapter 7

CONCLUSION