List of Figures

1.1 Block Diagram for measurement of Reflection Coefficient 15

1.2 Calibration Set up 16

2.1 Geometry of a circular patch antenna. 32

2.2 Geometry of a stacked circular patch antenna. 42

2.3 Variation of Impedance (Real) with Frequency for single patch $r_0 = 20$ mm. 45

2.4 Variation of Impedance (Imaginary) with Frequency for single patch $r_0 = 20$ mm. 45

2.5 Variation of Impedance (Real) with Frequency for the ratio of patch sizes $b/a = 1.0$ and $r_0 = 12$ mm. 46

2.6 Variation of Impedance (Imaginary) with Frequency for the ratio of patch sizes $b/a = 1.0$ and $r_0 = 12$ mm. 46

2.7 Variation of Impedance (Real) with Frequency for the ratio of patch sizes $b/a = 1.1$ and $r_0 = 20$ mm. 47

2.8 Variation of Impedance (Imaginary) with Frequency for the ratio of patch sizes $b/a = 1.1$ and $r_0 = 20$ mm. 47

2.9 Variation of Impedance (Real) with Frequency for the ratio of patch sizes $b/a = 1.1$ and $r_0 = 12$ mm. 48

2.10 Variation of Impedance (Imaginary) with Frequency for the ratio of patch sizes $b/a = 1.1$ and $r_0 = 12$ mm. 48

2.11 Variation of Impedance (Real) with Frequency for the ratio of patch sizes $b/a = 1.05$ and $r_0 = 20$ mm. 49

2.12 Variation of Impedance (Imaginary) with Frequency for the ratio of patch sizes $b/a = 1.05$ and $r_0 = 20$ mm. 49

2.13 Theoretical and measured return loss for a single element stacked antenna. 50
3.1 Geometry of an annular ring antenna.

3.2 Variation of Impedance with Frequency for first dominant mode
\((\varepsilon_r = 2.2, h = 1.59 \text{ mm}, a = 30 \text{ mm}, b = 60 \text{ mm and feed location } r_0 = 35 \text{ mm}).\)

3.3 Variation of Impedance with Frequency for second dominant mode
\((\varepsilon_r = 2.2, h = 1.59 \text{ mm}, a = 30 \text{ mm}, b = 60 \text{ mm and feed location } r_0 = 35 \text{ mm}).\)

3.4 Variation of Impedance (Real) with Frequency for \(\text{TM}_{12}\) mode
\((\varepsilon_r = 2.2, h = 1.59 \text{ mm}, a = 30 \text{ mm}, b = 60 \text{ mm and feed point location } r_0 = 35 \text{ mm}).\)

3.5 Variation of Impedance (Imaginary) with Frequency for \(\text{TM}_{12}\) mode
\((\varepsilon_r = 2.2, h = 1.59 \text{ mm}, a = 30 \text{ mm}, b = 60 \text{ mm and feed point location } r_0 = 35 \text{ mm}).\)

3.6 Variation of Resonant Resistance with Radial location of Feed
\((\varepsilon_r = 2.2, h = 1.59 \text{ mm}, a = 30 \text{ mm}, b = 60 \text{ mm and } r_0 = 35 \text{ mm}).\)

3.7 Variation of Return Loss with Frequency for second dominant mode
\((\varepsilon_r = 2.2, h = 1.59 \text{ mm}, a = 30 \text{ mm}, b = 60 \text{ mm and } r_0 = 35 \text{ mm}).\)

3.8 Radiation Pattern for probe fed annular ring antenna for \(\text{TM}_{12}\) mode
\((a = 30 \text{ mm}, b = 60 \text{ mm}, h = 1.59 \text{ mm}, \varepsilon_r = 2.2 \text{ and } r_0 = 35 \text{ mm}).\)

3.9 Geometry of asymmetrically loaded annular ring antenna.

3.10 Comparison of present theory with simulated data: Resonant Frequency with Radial location of post
\((a = 30 \text{ mm}, b = 60 \text{ mm}, h = 1.59 \text{ mm}, \varepsilon_r = 2.2 \text{ and } P = 1).\)

3.11 Comparison of present theory with simulated data: Resonant Frequency with Radius of post
\((a = 30 \text{ mm}, b = 60 \text{ mm}, c = 50 \text{ mm}, h = 1.59 \text{ mm and } P = 1).\)

4.1 Geometry of symmetrically loaded annular ring antenna.

4.2 Comparison of present theory with simulated data: Resonant Frequency with Radial location of posts
\((a = 30 \text{ mm}, b = 60 \text{ mm}, h = \ldots\)
Comparison of present theory with simulated data: Resonant frequency with Number of posts ($a = 30$ mm, $b = 60$ mm, $c = 50$ mm, $h = 1.59$ mm and $\varepsilon_r = 2.2$).

Comparison of present theory with simulated data: Resonant Frequency with Radial location of posts for dominant mode ($n = 0$) for different $\Delta = 1$ mm, $\Delta = 2$ mm ($a = 30$ mm, $b = 60$ mm, $h = 1.59$ mm, $\varepsilon_r = 2.2$ and $P = 1$).

Comparison of present theory with simulated data: Resonant Frequency with Radial location of posts for higher order mode ($n = 1$) for different $\Delta = 1$ mm, $\Delta = 2$ mm. ($a = 30$ mm, $b = 60$ mm, $h = 1.59$ mm, $\varepsilon_r = 2.2$ and $P = 1$).

Comparison of present theory with simulated data: Resonant Frequency with Radial location of posts for dominant mode ($n = 0$) for different $\Delta = 2$ mm ($a = 30$ mm, $b = 60$ mm, $h = 1.59$ mm, $\varepsilon_r = 2.2$ and $P = 4$).

Comparison of present theory with simulated data for TM$_{11}$ mode: Resonant Frequency with Radial location of posts ($a = 30$ mm, $b = 60$ mm, $h = 1.59$ mm, $\varepsilon_r = 2.2$ and $P = 4$).

Comparison of present theory with simulated data for TM$_{21}$ mode: Resonant Frequency with radial location of posts ($a = 30$ mm, $b = 60$ mm, $h = 1.59$ mm, $\varepsilon_r = 2.2$ and $P = 4$).

Variation of return loss with frequency for different number of posts ($a = 30$ mm, $b = 60$ mm, $c = 50$ mm, $h = 0.159$ mm and $\varepsilon_r = 2.2$).

Comparison of present theory with measured data: Input impedance with Frequency ($a = 30$ mm, $b = 60$ mm, $c = 50$ mm, $h = 1.59$ mm, $\varepsilon_r = 2.2$ and $P = 1$).

Comparison of present theory with simulated data: Input impedance with Frequency ($a = 30$ mm, $b = 60$ mm, $c = 50$ mm, $h = 1.59$ mm, $\varepsilon_r = 2.2$ and $P = 4$).

Geometry of the microstrip line fed ring resonator.
5.2 Equivalent circuit of the microstrip line fed ring resonator. 120
5.3 Structure of multilayered stripline. 122
5.4 Comparison of present theory with simulated data: Resonant Resistance with Length for \(w = 1.5 \) mm for \(n = 1 \). 125
5.5 Comparison of present theory with simulated data Resonant Resistance with Length for \(w = 0.95 \) mm for \(n = 1 \). 125
5.6 Comparison of present theory with simulated data: Resonant Resistance with Length for \(w = 0.50 \) mm for \(n = 1 \). 126
5.7 Comparison of present theory with simulated data: Resonant Resistance with Length for \(w = 0.50 \) mm for \(n = 2 \). 126
5.8 Comparison of present theory with simulated data: Resonant Resistance with Length for \(w = 0.95 \) mm for \(n = 2 \). 127
5.9 Impedance of a probe fed ring resonator with Frequency of its fundamental mode (\(a = 30 \) mm, \(b = 60 \) mm and \(r_0 = 35 \) mm). 128
5.10 Input impedance with Frequency of fundamental mode of ring resonator loaded with transmission line (\(a = 30 \) mm, \(b = 60 \) mm, \(w = 0.95 \) mm and \(l = 29 \) mm). 128
5.11 Gain of electromagnetically fed microstrip ring resonator. 129
List of Tables

2.1 Comparison of gain of stacked patch and single patch antenna. 51

2.2 Numerical and Simulated values of radiation efficiency of stacked antenna with radial feed (r_0=12 mm and ratio of patch size b/a = 1). 51

3.1 Correction factor values. 80

3.2 Comparison of measured and computed values of resonant frequency of asymmetrically shorted ring resonator for $n = 1$ (first dominant mode). 80

3.3 Comparison of measured and computed values of resonant frequency of asymmetrically shorted ring resonator for $n = 2$ (second dominant mode). 81

3.4 Return Loss of asymmetrically loaded ring resonator for $n = 1$ and $n - 2$ (first and second dominant mode). 81

4.1 Comparison of numerical and simulated values of resonant frequency of shorted ring resonator for $P = 4$ and $\Delta = 1$ mm for TM$_{01}$mode. 97

4.2 Comparison of numerical and simulated values of resonant frequency of shorted ring resonator for $P = 4$ and $\Delta = 1$ mm for TM$_{11}$mode. 98

4.3 Comparison of numerical and simulated values of resonant frequency of shorted ring resonator for $P = 4$ and $\Delta = 1$ mm for TM$_{21}$mode. 99

4.4 Measured values of return loss of antenna at different modes with different posts. 100

4.5 Comparison of measured and computed values of resonant frequency of shorted ring resonator. 100