CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>.....</td>
</tr>
<tr>
<td></td>
<td>1.1 Preliminary Remarks</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Partial differential equations in boundary value problems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Types of Boundary Conditions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 Integral Transform Technique.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 Boundary value problems with triangular boundaries.</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>AN INTEGRAL TRANSFORM FOR ISOSCELES</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>RIGHT TRIANGULAR BOUNDARY WITH NEUMANN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONDITIONS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Eigen Value Problem.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Orthogonality of eigen functions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 Normalisation of eigen functions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 Integral transform and its inverse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6 Operational property of the transform.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7 Conclusion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8 Appendix.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REFERENCES.</td>
<td></td>
</tr>
</tbody>
</table>
III MEASUREMENT OF PERMITIVITY FROM THE
CHANG OF RESONANCE FREQUENCY OF RIGHT
TRIANGULAR CAVITY IN TE_{101} MODe.

3.1 Introduction.

3.2 Normal modes of T.E. Waves.

3.3 Frequency change due to small
cylindrical sample.

3.4 Q-factor of the right triangular
cavity in T.E_{101} mode.

3.5 Conclusions.

IV INTEGRAL TRANSFORM FOR ISOSCELES RIGHT
TRIANGULAR REGION WITH INTERIOR CONSTRAINT
AND T.M. WAVE PROPAGATION.

4.1 Introduction.

4.2 Integral transform for isosceles
right triangular region with constraint.

4.3 Transverse magnetic waves in prismatic
wave guide with a conductor inside.

4.4 Comparison of T.M. modes in
isosceles right triangular wave guide
with and without constraints.

4.5 Conclusions

V NEUTRON DIFFUSION THROUGH A SPACE BOUNDED
BY TWO PRISMATIC CYLINDERS OF EQUILATERAL
TRIANGULAR CROSS-SECTION.

5.1 Introduction.

5.2 Statement of the problem.

5.3 Solution of the problem.
5.4 Condition of sustained reaction.
5.5 Determination of m^2 mp lowest.
5.6 Determination of minimum critical volume.
5.7 Numerical Calculations.
5.8 Conclusions.

VI INTEGRAL TRANSFORM FOR TRAPEZOIDAL CROSS-SECTION AND T.M. WAVE PROPOGATION THROUGH A WAVE GUIDE OF TRAPEZOIDAL CROSS-SECTION.

6.1 Introduction.
6.2 Development of integral transform for trapezoidal region.
6.3 T.M. Wave Propogation through a Wave Guide of Trapezoidal Cross-Section.
6.4 Power flow in a wave guide of trapezoidal cross-section.
6.5 Losses due to current in the wave guide of trapezoidal cross-section.
6.6 Conclusions.

VII FLOW OF DUSTY GAS THROUGH A PIPE HAVING ISOSCELES RIGHT TRIANGULAR CROSS-SECTION.

7.1 Introduction.
7.2 Required integral transform.
7.3 Statement of the problem.
7.4 Numerical Calculations and Results.
MEASUREMENT OF PERMIABILITY FROM THE
CHANGE OF FREQUENCY OF RIGHT TRIANGULAR
CAVITY DUE TO THE INTRODUCTION OF CYLINDRICAL
SAMPLE.

8.1 Introduction.
8.2 Normal modes of T.M. Waves.
8.3 Frequency change due to a cylindrical
sample.
8.4 Frequency change for T.M.210 mode.
8.5 Losses in Cavity Walls.
8.6 Q-Factor for right triangular cavity
in T.M.210 mode.
8.7 Conclusions.