LIST OF FIGURES:

Chapter 1:
Fig. 1: Structural formulae of n-nitriles. 14

Chapter 2:
Fig. 1: Plot of ε' and ε'' versus log ωr. 38
Fig. 2: Debye semicircle 43
Fig. 3: Cole-Cole plot 43
Fig. 4: Cole-Davidson plot 43

Chapter 3:
Fig. 1: Basic unit in Time Domain measurement 68
Fig. 2: Incident and reflected / transmitted pulses in transmission line 70
Fig. 3: Block diagram of TDR unit 78
Fig. 4: Incident and reflected pulses without sample in a time window of 10 ns. 81
Fig. 5: Incident and reflected pulses with sample in a time window of 10 ns. 82
Fig. 6: Construction of 7 mm and 3.5 mm sample cells 85
Fig. 7: Fringing field and SMA cell dimensions 88
Fig. 8: Incident and reflected pulses without sample in a time window of 20 ns. 88
Fig. 9: Incident and reflected pulses without sample in a time window of 5 ns. 89
Fig.10a: Reflected pulse with sample in a time window of 10 ns. (Unproper selection of time window) 91
Fig.10b: Reflected pulse with sample in a time window of 1 ns. (Unproper selection of time window) 92
Fig.10c: Reflected pulse with sample in a time window of 5 ns. (proper selection of time window) 93
Fig. 11: Time referencing by matching connector reflections 96
Fig. 12: Photograph showing complete experimental setup. 100
Fig. 13: Reflected pulse with and without sample in a time window of 5 ns.

Fig. 14: Subtracted \([p(t)]\) and added \([q(t)]\) pulses.

Fig. 15: Constant temperature bath.

Fig. 16: Example of complex reflection coefficient (raw data)

Fig. 17: Corrected spectra using Bilinear Calibration Process

Fig. 18: Corrected spectra in Least Square Fit method.

Chapter 4:

Fig.A1: Typical raw spectra of acetonitrile-methanol mixture

Fig.A2: Plot of \(\varepsilon_o\) versus volume fraction of acetonitrile in methanol at different temperatures.

Fig.A3: Plot of \(\tau\) versus volume fraction of acetonitrile in methanol at different temperatures.

Fig.A4: Plot of \(g^{\text{eff}}\) versus volume fraction of acetonitrile in methanol at different temperatures.

Fig.A5: Plot of \(\varepsilon^E\) versus weight fraction of methanol in acetonitrile at different temperatures.

Fig.A6: Plot of \(1/\tau^E\) versus weight fraction of methanol in acetonitrile at different temperatures.

Fig.B1: Typical raw spectra of butanenitrile-methanol mixture

Fig.B2: Plot of \(\varepsilon_o\) versus volume fraction of butanenitrile in methanol at different temperatures.

Fig.B3: Plot of \(\tau\) versus volume fraction of butanenitrile in methanol at different temperatures.

Fig.B4: Plot of \(g^{\text{eff}}\) versus volume fraction of butanenitrile in methanol at different temperatures.

Fig.B5: Plot of \(\varepsilon^E\) versus weight fraction of methanol in butanenitrile at different temperatures.
Fig.B6: Plot of $1/\tau^E$ versus weight fraction of methanol in butanenitrile at different temperatures.

Fig.C1: Typical raw spectra of pentanenitrile-methanol mixture

Fig.C2: Plot of ε_0 versus volume fraction of pentanenitrile in methanol at different temperatures.

Fig.C3: Plot of τ versus volume fraction of pentanenitrile in methanol at different temperatures.

Fig.C4: Plot of g_{eff} versus volume fraction of pentanenitrile in methanol at different temperatures.

Fig.C5: Plot of ε^E versus weight fraction of methanol in pentanenitrile at different temperatures.

Fig.C6: Plot of $1/\tau^E$ versus weight fraction of methanol in pentanenitrile at different temperatures.

Fig.D1: Typical raw spectra of hexanenitrile-methanol mixture

Fig.D2: Plot of ε_0 versus volume fraction of hexanenitrile in methanol at different temperatures.

Fig.D3: Plot of τ versus volume fraction of hexanenitrile in methanol at different temperatures.

Fig.D4: Plot of g_{eff} versus volume fraction of hexanenitrile in methanol at different temperatures.

Fig.D5: Plot of ε^E versus weight fraction of methanol in hexanenitrile at different temperatures.

Fig.D6: Plot of $1/\tau^E$ versus weight fraction of methanol in hexanenitrile at different temperatures.

Fig.E1: Typical raw spectra of octanenitrile-methanol mixture

Fig.E2: Plot of ε_0 versus volume fraction of octanenitrile in methanol at different temperatures.

Fig.E3: Plot of τ versus volume fraction of octanenitrile in methanol at different temperatures.
Fig. E4 : Plot of g^{eff} versus volume fraction of octanenitrile in methanol at different temperatures. 209
Fig. E5 : Plot of ε^E versus weight fraction of methanol in octanenitrile at different temperatures. 211
Fig. E6 : Plot of $1/\tau^E$ versus weight fraction of methanol in octanenitrile at different temperatures. 212
Fig. F1 : Typical raw spectra of decanenitrile-methanol mixture 219
Fig. F2 : Plot of ε_0 versus volume fraction of decanenitrile in methanol at different temperatures. 222
Fig. F3 : Plot of τ versus volume fraction of decanenitrile in methanol at different temperatures. 223
Fig. F4 : Plot of g^{eff} versus volume fraction of decanenitrile in methanol at different temperatures. 226
Fig. F5 : Plot of ε^E versus weight fraction of methanol in decanenitrile at different temperatures. 228
Fig. F6 : Plot of $1/\tau^E$ versus weight fraction of methanol in decanenitrile at different temperatures. 229
Fig. G1 : Typical raw spectra of undecanenitrile-methanol mixture 235
Fig. G2 : Plot of ε_0 versus volume fraction of undecanenitrile in methanol at different temperatures. 237
Fig. G3 : Plot of τ versus volume fraction of undecanenitrile in methanol at different temperatures. 238
Fig. G4 : Plot of g^{eff} versus volume fraction of undecanenitrile in methanol at different temperatures. 241
Fig. G5 : Plot of ε^E versus weight fraction of methanol in undecanenitrile at different temperatures. 242
Fig. G6 : Plot of $1/\tau^E$ versus weight fraction of methanol in undecanenitrile at different temperatures. 244
Fig. H1 : Typical raw spectra of acetonitrile-water mixture 250
Fig. H2 : Plot of ε_0 versus volume fraction of acetonitrile in water at different temperatures. 253

Fig. H3 : Plot of τ versus volume fraction of acetonitrile in water at different temperatures. 254

Fig. H4 : Plot of g_{eff} versus volume fraction of acetonitrile in water at different temperatures. 256

Fig. H5 : Plot of ε^E versus weight fraction of water in acetonitrile at different temperatures. 258

Fig. H6 : Plot of $1/\tau^E$ versus weight fraction of water in acetonitrile at different temperatures. 259

Chapter 5:

Fig. 1 : Change in ε_0 with number of carbon atoms in the chain for n-alcohols and n-nitriles. 270

Fig. 2 : Change in τ with number of carbon atoms in the chain for n-alcohols and n-nitriles. 271

Fig. 3 : Change in maximum excess permittivity with number carbon atoms for n-nitriles. 273