CHEMOPREVENTIVE EFFICACY OF *Vitis vinifera* GOLD NANOPARTICLES IN SKIN CARCINOGENESIS: AN *in vitro* AND *in vivo* APPROACH

a thesis submitted by

J. GRACE NIRMALA (09ZN007)

in partial fulfillment for the award of the degree of

DOCTOR OF PHILOSOPHY

under the supervision of

DR. R.T. NARENDHIRAKANNAN

and the joint supervision of

DR. S. MURUGAN

DEPARTMENT OF BIOTECHNOLOGY
SCHOOL OF BIOTECHNOLOGY & HEALTH SCIENCES
KARUNYA UNIVERSITY
(Karunya Institute of Technology and Sciences)
(Declared as Deemed-to-be-University under Sec-3 of the UGC Act, 1956)
Karunya Nagar, Coimbatore - 641114. INDIA

MAY 2015
DECLARATION

I, J. GRACE NIRMALA hereby declare that the thesis, entitled “Chemopreventive efficacy of Vitis vinifera gold nanoparticles in skin carcinogenesis: an in vitro and in vivo approach”, submitted to the Karunya University, in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Biotechnology is a record of original and independent research work done by me during the period 2009 – 2015, under the supervision and guidance of Dr. R.T. Narendhirakannan, Assistant Professor (SG), Department of Biotechnology, School of Biotechnology and Health Sciences, Karunya University. The work contained in this thesis has not been previously submitted to meet the requirements for a degree or diploma at this or any other higher education institution.

Signature of the candidate

(J. Grace Nirmala)
BONAFIDE CERTIFICATE

Certified that this thesis titled “Chemopreventive efficacy of Vitis vinifera gold nanoparticles in skin carcinogenesis: an in vitro and in vivo approach” is the bonafide work of J. GRACE NIRMALA who carried out the research under my supervision. Certified further, that to the best of my knowledge the work reported herein does not form part of any other thesis or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other scholar.

Countersigned by

Dr. J. Jannet Vennila
Professor and Director
Department of Biotechnology
School of Biotechnology and Health Sciences
Karunya University

Dr. R.T. Narendhirakannan
Supervisor
Assistant Professor (SG)
Department of Biotechnology
School of Biotechnology and Health Sciences
Karunya University

Dr. S. Murugan
Co-Guide
Assistant Professor (SG)
Department of Biotechnology
School of Biotechnology and Health Sciences
Karunya University
ABSTRACT

Gold nanoparticles (AuNPs) are found to be beneficial for numerous promising applications in the field of biomedicine and in the development of therapeutic nanomedicine products. Several studies suggest that surface modifications by capping agents or surface coatings of gold nanoparticles can play an important role in biological systems and for site directed delivery. It is necessary and need of the hour to develop environmentally and biological friendly green processes for rapid synthesis of nanoparticles to avoid intervention of ‘man-made’ chemicals that will be coated onto the nanoparticles when chemicals are used as reducing agents. Plant mediated synthesis of gold nanoparticles is acquiring more significance due to ease and fast rate of synthesis along with cost effective and environmental friendly processes.

The phytochemicals contained within *Vitis vinifera* commonly known as grapes were utilised as reducing agents for the reduction of gold metal ions to the respective gold nanoparticles. Grapes are one of the most widely consumed fruits in the world and are rich in antioxidant abundant polyphenols. Thus, gold nanoparticles synthesized by utilizing *Vitis vinifera* phytochemicals can selectively target cancer cells and the phytochemicals that are occluded within the nanoparticles can serve as potential anticancer agents providing better efficacy in killing cancer cells. Oxidative stress can lead to DNA damage in the skin and uncontrolled release of reactive oxygen species can be the cause of skin cancer and it is involved in pathogenesis of number of human skin disorders.
The present study was carried out to assess the chemopreventive effects of *Vitis vinifera* peel and seed extracts and gold nanoparticles synthesized using *Vitis vinifera* seed and peel extracts on 7,12- dimethylbenz [a] anthracene (DMBA)-initiated and 12- O-tetradecanoylphorbol 13-acetate (TPA) tumor promoted model using Swiss albino mice and also in an *in vitro* model human epidermoid carcinoma A431 cell lines for antiproliferative effects and induction of apoptosis. The effects of *Vitis vinifera* seed and peel coated gold nanoparticles were tested for their immunomodulatory effects in Swiss albino mice.

The present study suggests that the aqueous extracts of *Vitis vinifera* seed and peel has potent *in vitro* antioxidant activities. High amounts of phenols, ascorbic acid and flavonoids present in seeds and peels may also be responsible for the *in vitro* antioxidant activity and thus they can be used as a free radical scavengers to protect against various damages initiated by free radicals. *Vitis vinifera* seed aqueous extract showed high amount of polyphenols and *in vitro* antioxidant activities when compared to *Vitis vinifera* peel extract.

The polyphenolic compounds exhibited a vital role as reducing, capping as well as stabilizing agents in the green synthesis process of gold nanoparticles. The synthesized gold nanoparticles were confirmed by UV-Visible Spectroscopy analysis with the conversion of yellow to deep purple red color and the particle size distribution showed particle size of ~ 50 ± 5 nm particles. Transmission electron microscopic (TEM) analysis showed the size and spherical shape of the gold nanoparticles. Fourier transform infrared spectroscopic analysis (FTIR) confirmed
the presence the polyphenols that were capped onto the peel and seed gold nanoparticles.

The gold nanoparticles synthesized biologically using *Vitis vinifera* peel and seed extracts were studied for their antiproliferative activities and induction of apoptosis. At the inhibitory concentration (IC₅₀), grape seed extract (111.11 µg/mL), grape seed AuNPs (24.2 µg/mL), grape peel extract (319.14 µg/mL) and grape peel AuNPs (23.6 µg/mL) were incubated for 24 hrs with A431 cells. *Vitis vinifera* peel and seed AuNPs were able to impart cytotoxic effects, induced apoptosis and apoptotic morphological changes in A431 cells significantly (*p*<0.01) and this effect is associated with the interference with mitochondrial membrane potential. This reduction in mitochondrial membrane potential probably initiated the apoptotic cascade in the nanoparticles treated cells.

Immunomodulatory activity of *Vitis vinifera* peel and seed AuNPs as well as peel and seed extracts showed that it may be due to the combined action of humoral and cell-mediated immune responses wherein the results indicated that the *Vitis vinifera* peel and seed AuNPs could act as a non-toxic immunomodulator by stimulating the production of white blood cells (WBC), hemoglobin content (Hb) and production of antibodies against Sheep red blood cells (SRBC) antigen significantly (*p*<0.05).

In the present study, DMBA as inducer (single application) and TPA (promoter) were applied on the dorsal area of the skin to induce skin cancer in Swiss albino mice for 16 weeks. On topical application, peel and seed gold nanoparticles demonstrated chemopreventive potential in DMBA induced skin
carcinogenesis by reducing the cumulative number of tumors in gold nanoparticles treated mice while increasing the antioxidant enzyme level in the treated groups significantly \((p<0.05)\). Histopathological evaluation showed that skin tissues from *Vitis vinifera* peel and seed AuNPs treated mice showed mild dysplasia and mild acanthosis. Severe hyperplasia, hyperkeratosis and well-differentiated squamous cell carcinoma were observed in all DMBA treated mice. Topical application of gold nanoparticles down regulated expression of mutant p53, Bcl-2 and pancytokeratin levels and may have facilitated the process of apoptosis in the chemical carcinogenesis process. The beneficial action of *Vitis vinifera* peel and seed AuNPs is probably due to its ability to stimulate the antioxidant enzymes in the cells and suppressed abnormal skin cell proliferation occurring during DMBA-induced skin papillomagenesis and demonstrated the chemopreventive potential of peel and seed gold nanoparticles in DMBA induced skin carcinogenesis than seed and peel aqueous extracts treated groups.

In conclusion, the present study suggests that *Vitis vinifera* seed and peel AuNPs possess chemopreventive potential against human epidermoid carcinoma cells (A431) *in vitro* and also against DMBA induced skin papillomagenesis with the mechanistic pathway of apoptosis both *in vitro* and *in vivo* studies. This can be due to the combined efficacy of gold nanoparticles in targeting the cancer cells and polyphenols that are capped on the nanoparticles providing chemopreventive effect on the cancer cells. This study will lead to developing a combination of drug using nanoparticles and polyphenols and thus enhancing the efficacy of a particular drug and its further use as a chemopreventive agent.
ACKNOWLEDGEMENT

Prima facie, I am grateful to **ALMIGHTY GOD** for the good health, wellbeing and whose blessings have bequeathéd in me the will power and confidence to carry out my research and complete this book.

I wish to express my sincere thanks to our beloved founders Late **Dr. D.G.S. Dhinakaran, C.A.I.I.B, Ph.D** and **Dr. Paul Dhinakaran, M.B.A, Ph.D**, Chancellor, for their love and support through prayers. I extend my thanks to our Vice Chancellor **Dr. S. Sundar Manoharan, Ph.D** and Registrar **Dr. C. Joseph Kennady** for giving me opportunity to do research. I place on record, my sincere thank you to **Dr. J. Jannet Vennila**, Director, School of Biotechnology and Health Sciences for providing me with all the necessary facilities for the research.

Foremost, I offer my sincerest gratitude to my supervisor, **Dr. RT. Narendhirakannan**, who has supported throughout my research work and thesis with his patience and knowledge whilst allowing me the room to work in my own way. I attribute the level of my doctorate degree to his encouragement and effort and without him this thesis, too, would not have been completed or written. One simply could not wish for a better or friendlier supervisor.

Besides my supervisor, I would like to thank my doctoral committee members **Dr. S. Manoharan**, Associate Professor, Department of Biochemistry and Biotechnology, Annamalai University, **Dr. C. Guruvayoorappan**, Assistant Professor
(SG) and Dr. S. Murugan Assistant Professor (SG), Department of Biotechnology, Karunya University for their support and timely help.

In my daily work I have been blessed with a friendly and cheerful group of fellow colleagues and I would like to thank Mrs. Neetu John, Mrs. Lalithambika, Mrs. Jennifer Grace, Ms. Agnes Vigila for the pleasant and productive working atmosphere they provided. Also I thank my colleagues Mr. Manivannan A and Ms. Ishwarya M for their constant support.

I must also acknowledge Mr. Pinto, Mr. Vijaya Kumar, Mr. Dhinesh Durai, Mrs. Kamali, Mr. Srinivasan, Mrs. Aditee, Ms. Jebarosey, Mr. Mano and Mr. Anand for their friendship, love and unyielding support all these years. They have been my strength, wiped my tears, helped me with personal challenges and I have been lucky to have met them.

I would like to show my gratitude to Dr. MSA Muthukumar Nadar, Assistant professor, Karunya University for his motivation and inspiring support. I also thank all the faculty members and lab technicians for their support. I would like to thank all the people who contributed in some way to the work described in this thesis.

Not the least, I would like to acknowledge my parents who have supported me through my entire life with their prayers, help and encouragement when I needed them the most. I would like to thank my Dad, Mom and Sister and I owe everything to them.

GRACE NIRMALA J
CONTENTS

Title .. Page No

DECLARATION .. ii
BONAFIDE CERTIFICATE .. iii
ABSTRACT .. iv
ACKNOWLEDGEMENT ... v
TABLE OF CONTENTS ... vi
LIST OF TABLES .. vii
LIST OF FIGURES .. viii
LIST OF SYMBOLS AND ABBREVIATIONS ix

1. INTRODUCTION ... 1
 1.1 Cancer-hallmark of diseases 1
 1.2 Causes of cancer ... 2
 1.3 Skin cancer .. 2
 1.4 Causes of skin cancer .. 3
 1.5 Oxidative stress in skin cancer 3
 1.6 Chemical carcinogenesis in skin cancer 4
 1.7 Treatment strategies for skin cancer 6
 1.8 Skin cancer chemoprevention 6
 1.9 Metal nanoparticles .. 7
 1.10 Gold nanoparticles and its properties 8
 1.11 Green synthesis of gold nanoparticles 8
 1.12 French Paradox-\textit{Vitis vinifera} 11
 1.13 Synthesis of green gold nanoparticles 11
 1.14 OBJECTIVES AND SCOPE OF THE WORK 13
2. REVIEW OF LITERATURE
 2.1 Nonmelanoma skin cancer-Epidemiology 14
 2.2 Risk factors associated with skin cancer 16
 2.3 What are nanoparticles? 17
 2.4 Biological gold nanoparticles 17
 2.5 Behaviour of gold nanoparticles under in vivo conditions 20
 2.6 Biodistribution and toxicity of gold nanoparticles 22
 2.7 Vitis vinifera-polyphenols abundant fruit 28

3. PHYTOCHEMICAL ANALYSIS AND IN VITRO ANTIOXIDANT ACTIVITIES OF VITIS VINIFERA PEEL AND SEED AQUEOUS EXTRACTS 31
 3.1 Introduction 31
 3.2 Materials and Methods 34
 3.2.1 Chemicals 34
 3.2.2 Collection of Vitis vinifera seeds and peels 34
 3.2.3 Preparation of aqueous extracts from Vitis vinifera peels and seeds 34
 3.2.4 Phytochemical screening of Vitis vinifera seed and peel extracts 35
 3.2.4.1 Qualitative analysis of phytochemicals 35
 3.2.4.1.1 Test for alkaloids 35
 3.2.4.1.2 Test for flavonoids 35
 3.2.4.1.3 Test for carbohydrates 35
 3.2.4.1.4 Test for glycosides 35
 3.2.4.1.5 Test for saponins 35
 3.2.4.1.6 Test for tannins 35
 3.2.4.1.7 Test for amino acids 36
 3.2.4.1.8 Test for proteins 36
3.2.4.1.9 Test for phytosterol 36
3.2.4.1.10 Test for triterpenoids 36
3.2.4.2 Quantitative analysis of phytochemicals 36
3.2.5 *In vitro* antioxidant activity 37
3.2.5.1 DPPH scavenging assay 37
3.2.5.2 Hydrogen peroxide scavenging assay 37
3.2.5.3 Assay of reducing power 38
3.2.5.4 Total antioxidant capacity 38
3.2.6 Gas chromatography mass spectroscopy (GCMS analysis) 39
3.2.7 Statistical analysis 39

3.3 Results 40
3.3.1 Collection and processing of *Vitis vinifera* seeds and peels 40
3.3.2 Qualitative analysis of phytochemicals in *Vitis vinifera* 41
3.3.3 Quantitative analysis of phytochemicals in *Vitis vinifera* 42
3.3.4 GCMS analysis of *Vitis vinifera* seed and peel extracts 42
3.3.5 *In vitro* antioxidant activities of *Vitis vinifera* seed and peel extracts 47

3.4 Discussion 50

4. **SYNTHESIS OF BIOCOMPATIBLE GOLD NANOPARTICLES (AuNPs) USING *VITIS VINIFERA* PEEL AND SEED EXTRACTS** 56
4.1 Introduction 56
4.2 Materials and Methods 59
4.2.1 Preparation of *Vitis vinifera* seed and peel extracts 59
4.2.2 Synthesis of gold nanoparticles 59
4.2.3 Characterization of synthesized gold nanoparticles 60
4.2.4 Stability studies of AuNPs 61
4.2.5 Effect of pH and temperature on formation of AuNPs 61
4.3 Results 62
4.3.1 UV-Visible spectroscopy analysis 62
4.3.2 Transmission electron microscopy (TEM) and Energy dispersive X-ray analysis (EDX) 65
4.3.3 X-ray diffraction analysis 68
4.3.4 Particle size distribution 68
4.3.5 Fourier transform infrared spectroscopy (FTIR) analysis 71
4.3.6 Zeta potential analysis 72
4.3.7 Effect of pH and temperature on the biosynthesized AuNPs 73
4.3.8 Stability studies 78
4.4 Discussion 80

5. EVALUATION OF IN VITRO ANTICANCER ACTIVITY OF GOLD NANOPARTICLES SYNTHESIZED USING VITIS VINIFERA PEEL AND SEED EXTRACTS 86
5.1 Introduction 86
5.2 Materials and Methods 90
 5.2.1 Chemicals 90
 5.2.2 Cell culture 90
 5.2.3 Cell cytotoxicity assay 90
 5.2.3.1 Calculation of the percentage of growth inhibition and cell viability 91
 5.2.4 UV-Visible spectroscopy of the cells treated with gold nanoparticles 92
 5.2.5 Morphological changes in A431 cells 92
 5.2.6 Assessment of reactive oxygen species by DCFH-DA 92
 5.2.7 Annexin V-FITC apoptosis assay (TUNEL) 93
 5.2.8 Mitochondrial membrane potential by Rhodamine 123 94
 5.2.9 Apoptotic morphological changes by acridine orange (AO)
5.2.10 Statistical analysis

5.3 Results

5.3.1 Cytotoxic effects of Vitis vinifera seed and peel AuNPs and extracts

5.3.2 Effects of Vitis vinifera seed and peel AuNPs and extracts on cell viability

5.3.3 Accumulation of Vitis vinifera peel and seed AuNPs and extracts in A431 cells

5.3.4 Effect of Vitis vinifera peel and seed AuNPs and extracts on the morphological changes of A431 cells

5.3.5 Effect of Vitis vinifera peel and seed AuNPs and extracts on the measurement of reactive oxygen species

5.3.6 Effect of Vitis vinifera peel and seed AuNPs and extracts on the identification of apoptosis by Annexin V-FITC staining

5.3.7 Effect of Vitis vinifera peel and seed AuNPs and extracts on the nuclear morphological changes

5.3.8 Effect of Vitis vinifera peel and seed AuNPs and extracts on the mitochondrial membrane potential

5.4 Discussion

6. IMMUNOMODULATORY ACTIVITY OF GOLD NANOPARTICLES SYNTHESIZED USING VITIS VINIFERA SEED AND PEEL EXTRACT

6.1 Introduction

6.2 Materials and Methods

6.2.1 Animal

6.2.2 Administration of peel and seed gold nanoparticles and
aqueous extracts 138

6.2.2.1 Experimental design 138
6.2.2.2 Grouping of animals 138
6.2.2.3 Determination of the effect of Vitis vinifera peel and seed AuNPs on hematological parameters and relative organ weight 139

6.2.3 Experimental design 139
6.2.3.1 Grouping of animals 139
6.2.3.2 Antigen
 6.2.3.3.1 Preparation of sheep red blood cells (SRBC) 139
 6.2.3.3 Delayed type hypersensitivity (DTH) response 140
 6.2.3.4 Circulating antibody titre 140
6.2.4 Statistical analysis 140

6.3 Results 141

6.3.1 Effect of Vitis vinifera peel and seed AuNPs and extracts on the hematological parameters 141
6.3.2 Effect of Vitis vinifera peel and seed AuNPs and extracts on the hemoglobin content 141
6.3.3 Effect of Vitis vinifera peel and seed AuNPs and extracts on relative organ weight 144
6.3.4 Immunomodulatory effect of Vitis vinifera peel and seed AuNPs and extracts on circulating antibody titre and delayed type hypersensitivity 144

6.4 Discussion 147

7. CHEMOPREVENTIVE POTENTIAL OF GOLD NANOPARTICLES SYNTHESIZED USING VITIS VINIFERA PEEL AND SEED EXTRACT 150
7.1 Introduction

7.2 Materials and Methods
 7.2.1 Chemicals and reagents
 7.2.2 Experimental design
 7.2.3 Acute toxicity studies
 7.2.4 Tumor induction
 7.2.5 Tumor related parameters
 7.2.6 Hematological parameters
 7.2.7 Biochemical assays
 7.2.8 Histopathological evaluation
 7.2.9 Evaluation of immunoexpression of p53, BcL-2 and pan cytokeratin in *Vitis vinifera* seed and peel gold nanoparticles treated mice
 7.2.10 Statistical analysis

7.3 Results
 7.3.1 Oral toxicity induced by *Vitis vinifera* peel and seed AuNPs and extracts
 7.3.2 Chemopreventive potential of *Vitis vinifera* peel and seed AuNPs and extracts in DMBA induced skin cancer in mice
 7.3.3 Effect of *Vitis vinifera* peel and seed AuNPs and extracts on the hematological parameters in DMBA induced skin cancer in mice
 7.3.4 Effect of *Vitis vinifera* peel and seed AuNPs and extracts on serum liver and kidney enzymes levels
 7.3.5 Effect of *Vitis vinifera* peel and seed AuNPs and extracts on the enzymatic and non-enzymatic antioxidant levels
 7.3.6 Effect of *Vitis vinifera* peel and seed AuNPs and extracts on the histopathological features of the DMBA induced skin
cancer papillomagenesis in Swiss albino mice

7.3.7 Evaluation of immunoexpression of p53, BcL-2 and pan cytokeratin in *Vitis vinifera* seed and peel gold nanoparticles and extracts treated Swiss albino mice

7.4 Discussion

8. SUMMARY AND CONCLUSION

APPENDICES

REFERENCES

LIST OF PUBLICATIONS

CURRICULUM VITAE
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Worldwide estimated cancer cases</td>
</tr>
<tr>
<td>2.2</td>
<td>Biological agents to synthesize gold nanoparticles</td>
</tr>
<tr>
<td>2.3</td>
<td>Biodistribution of gold nanoparticles in vivo</td>
</tr>
<tr>
<td>2.4</td>
<td>Assessment of gold nanoparticles in vivo</td>
</tr>
<tr>
<td>2.5</td>
<td>Toxicity assessment of gold nanoparticles in vitro</td>
</tr>
<tr>
<td>2.6</td>
<td>Anticancer activities of Vitis vinifera</td>
</tr>
<tr>
<td>3.1</td>
<td>Qualitative analysis of phytochemicals in Vitis vinifera seed and peel extract</td>
</tr>
<tr>
<td>3.2</td>
<td>Quantitative analysis of phytochemicals in Vitis vinifera seed and peel extract</td>
</tr>
<tr>
<td>3.3</td>
<td>GCMS analytical report for major phytoconstituents present in Vitis vinifera seed extract</td>
</tr>
<tr>
<td>3.4</td>
<td>GCMS analytical report for major phytoconstituents present in Vitis vinifera peel extract</td>
</tr>
<tr>
<td>6.1</td>
<td>Effect of Vitis vinifera on the relative lymphoid organ weight (g/100 g body weight)</td>
</tr>
<tr>
<td>7.1</td>
<td>Inhibitory Potential of Vitis vinifera seed and peel AuNPs against DMBA-induced Skin Papillomagenesis</td>
</tr>
<tr>
<td>7.2</td>
<td>Effect of Vitis vinifera seed and peel AuNPs on body weight, tumor weight and inhibition of tumor</td>
</tr>
<tr>
<td>7.3</td>
<td>Effect of Vitis vinifera seed and peel extracts and AuNPs on the Hematological parameters</td>
</tr>
<tr>
<td>7.4</td>
<td>Effect of Vitis vinifera seed and peel extracts and AuNPs on the Hematological parameters</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Multistage model of mouse skin carcinogenesis</td>
</tr>
<tr>
<td>1.2</td>
<td>Application of nanotechnology in cancer</td>
</tr>
<tr>
<td>1.3</td>
<td>Taxonomy of Vitis vinifera</td>
</tr>
<tr>
<td>1.4</td>
<td>Phenolic composition of grapes</td>
</tr>
<tr>
<td>2.1</td>
<td>Occurrence of non-melanoma skin cancer in India from the year (1980-2011)</td>
</tr>
<tr>
<td>2.2</td>
<td>Risk factors associated with non-melanoma skin cancer</td>
</tr>
<tr>
<td>2.3</td>
<td>Active targeting of gold nanoparticles-receptor mediated endocytosis</td>
</tr>
<tr>
<td>2.4</td>
<td>Passive targeting of gold nanoparticles-gaps present in tumor and blood vessels</td>
</tr>
<tr>
<td>3.1</td>
<td>Collection and separation of Vitis vinifera peels and seeds</td>
</tr>
<tr>
<td>3.2</td>
<td>Aqueous extracts of Vitis vinifera peels and seeds</td>
</tr>
<tr>
<td>3.3</td>
<td>GCMS chromatogram of Vitis vinifera seed extract</td>
</tr>
<tr>
<td>3.4</td>
<td>GCMS chromatogram of Vitis vinifera peel extract</td>
</tr>
<tr>
<td>3.5</td>
<td>Free scavenging effect of Vitis vinifera seed and peel extracts on H₂O₂ radicals</td>
</tr>
<tr>
<td>3.6</td>
<td>Scavenging effect of Vitis vinifera seed and peel extracts on DPPH free radicals</td>
</tr>
<tr>
<td>3.7</td>
<td>Effect of Vitis vinifera seed and peel extracts on total antioxidant activity</td>
</tr>
<tr>
<td>3.8</td>
<td>Reducing power assay of Vitis vinifera seed and peel extracts</td>
</tr>
<tr>
<td>4.1</td>
<td>Aqueous extract of Vitis vinifera seed and peel changing color from pale yellow to purple red on adding 1mM HAuCl₄</td>
</tr>
<tr>
<td>4.2</td>
<td>UV-Vis Absorbance spectra of gold nanoparticles – Vitis vinifera seed</td>
</tr>
</tbody>
</table>
4.3 UV-Vis Absorbance spectra of gold nanoparticles – *Vitis vinifera* peel

4.4 TEM analysis of *Vitis vinifera* peel gold nanoparticles

4.5 TEM analysis of *Vitis vinifera* seed gold nanoparticles

4.6 EDX graph of *Vitis vinifera* peel gold nanoparticles

4.7 EDX graph of *Vitis vinifera* seed gold nanoparticles

4.8 XRD pattern of *Vitis vinifera* seed gold nanoparticles

4.9 XRD pattern of *Vitis vinifera* peel gold nanoparticles

4.10 Size distribution of *Vitis vinifera* peel gold nanoparticles

4.11 Size distribution of *Vitis vinifera* seed gold nanoparticles

4.12 FTIR analysis of *Vitis vinifera* seed and seed nanoparticles

4.13 FTIR analysis of *Vitis vinifera* peel and peel nanoparticles

4.14 Zeta potential of *Vitis vinifera* peel gold nanoparticles

4.15 Zeta potential of *Vitis vinifera* seed gold nanoparticles

4.16 UV-vis absorption spectra of reaction mixtures of *Vitis vinifera* peel gold nanoparticles at different temperatures

4.17 UV-vis absorption spectra of reaction mixtures of *Vitis vinifera* seed gold nanoparticles at different temperatures

4.18 UV-vis absorption spectra of reaction mixtures of *Vitis vinifera* seed gold nanoparticles showing *in vitro* stability

4.19 UV-vis absorption spectra of reaction mixtures of *Vitis vinifera* peel gold nanoparticles showing *in vitro* stability

5.1 Inhibitory effect of *Vitis vinifera* seed and peel extract on A431 cells after 24 hrs post incubation

5.2 Inhibitory effect of *Vitis vinifera* peel and seed AuNPs on A431 cells after 24 hrs post incubation

5.3 Inhibitory effect of fluorouracil on A431 cells after 24 hrs post incubation

5.4 Effect of *Vitis vinifera* peel and seed AuNPs and extracts on cell proliferation of HaCaT cells
5.5 Visible spectroscopic analysis of gold nanoparticles in the cell culture medium with A431 cells

5.6 Morphological changes in A431 cells after treatment with *Vitis vinifera* peel and seed extract and AuNPs (20X)

5.7 Effect of *Vitis vinifera* seed and peel extracts and AuNPs on production of ROS in A431 cell lines

5.8 Quantification of fluorescence intensities in A431 cell lines

5.9 Effect of *Vitis vinifera* seed and peel extracts and AuNPs on A431 cell lines by inducing apoptosis

5.10 *Vitis vinifera* seed and peel nanoparticles induce apoptosis in A431 cells

5.11 Effect of *Vitis vinifera* seed and peel extracts and AuNPs on A431 cell lines by inducing apoptotic morphological changes

5.12 Apoptotic morphological studies of A431 cells treated with *Vitis vinifera* seed and peel gold nanoparticles

5.13 Effect of *Vitis vinifera* seed and peel AuNPs and extracts on mitochondrial membrane potential of A431 cells

5.14 Percentage of cells showing fluorescence intensity after treatment with *Vitis vinifera* seed and peel AuNPs on A431 cells

6.1 Effect of *Vitis vinifera* seed and peel gold nanoparticles on total WBC Count

6.2 Effect of *Vitis vinifera* seed and peel gold nanoparticles on Hemoglobin content

6.3 Effect of *Vitis vinifera* seed and peel gold nanoparticles on circulating antibody titre

6.4 Effect of *Vitis vinifera* seed and peel gold nanoparticles on Delayed type hypersensitivity

7.1 Effect of *Vitis vinifera* peel and seed AuNPs and extracts in DMBA induced skin papillomagenesis in mice
7.2 Effect of *Vitis Vinifera* seed and peel AuNPs on the AST, ALT, ALP and Glucose levels

7.3 Effect of *Vitis Vinifera* seed and peel AuNPs on the kidney enzyme levels

7.4 Effect of *Vitis vinifera* seed and peel extracts on Catalase, Vit-E, SOD and LPO levels in normal and experimental mice

7.5 Effect of *Vitis vinifera* seed and peel extracts on GSH, GPx levels in normal and experimental mice

7.6 Representative photomicrographs of the histopathological observations in skin tissues of control and experimental animals (10X)

7.7 Representative photomicrographs of immunohistochemical staining of immunoexpression of p53 in skin tissues of control and experimental mice (10X)

7.8 Representative photomicrographs of immunohistochemical staining of immunoexpression of BcL-2 in skin tissues of control and experimental mice (10X)

7.9 Representative photomicrographs of immunohistochemical staining of immunoexpression of pan cytokeratin in skin tissues of control and experimental mice (10X)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td>±</td>
<td>Plus or Minus</td>
</tr>
<tr>
<td>≤</td>
<td>Less than or equal to</td>
</tr>
<tr>
<td>≥</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td>°</td>
<td>Degree</td>
</tr>
<tr>
<td>µg</td>
<td>Micro gram</td>
</tr>
<tr>
<td>µL</td>
<td>Micro litre</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>Annexin V-FITC-</td>
<td>Annexin V fluorescein isothiocyanate</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AO</td>
<td>Acridine orange</td>
</tr>
<tr>
<td>APCs</td>
<td>Antigen presenting cells</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>Au</td>
<td>Gold</td>
</tr>
<tr>
<td>AuNPs</td>
<td>Gold nanoparticles</td>
</tr>
<tr>
<td>B.C</td>
<td>Before Christ</td>
</tr>
<tr>
<td>B.wt</td>
<td>Body weight</td>
</tr>
<tr>
<td>BCC</td>
<td>Basal cell cancer</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
</tbody>
</table>
BSI - Botanical Survey of India
CAT - Catalase
CE - Catechin equivalent
cm - Centimeter
CO₂ - Carbon dioxide
DCF - 2′, 7′-di- chlorofluorescein
DCFH-DA - 2′, 7′- dichlorodihydro fluorescein diacetate
DLS - Dynamic light scattering
DMBA - 7, 12-dimethylbenz[a]anthracene
DMEM - Dulbecco's Modified Eagle Medium
DMSO - Dimethyl sulfoxide
DNA - Deoxyribonucleic acid
DNPH - 2, 4-dinitrophenyl hydrazine
DPPH - 2, 2-diphenyl-1-picrylhydrazyl
DTH - Delayed Type Hypersensitivity
EDX - Energy dispersive X-ray spectroscopy
EPR - Enhanced permeation and retention
ESR - Erythrocyte sedimentation rate
EtBr - Ethidium Bromide
FBS - Foetal Bovine Serum
FDA - Food and drug administration
FTIR - Fourier Transform Infrared Spectroscopy
g - Gram
GAE - Gallic acid equivalent
GC - Gas chromatography
GCMS - Gas Chromatography Mass Spectroscopy
GPx - Gluthathione peroxidase
GSH - Reduced glutathione
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide</td>
</tr>
<tr>
<td>NAC</td>
<td>N-acetyl cysteine</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>NBT</td>
<td>Nitroblue tetrazolium</td>
</tr>
<tr>
<td>NCCS</td>
<td>National Centre for Cell Science</td>
</tr>
<tr>
<td>NIST4</td>
<td>National Institute Standard and Technology</td>
</tr>
<tr>
<td>nM</td>
<td>Nanomolar</td>
</tr>
<tr>
<td>NMSC</td>
<td>Nonmelanoma skin cancer</td>
</tr>
<tr>
<td>NPs</td>
<td>Nanoparticles</td>
</tr>
<tr>
<td>OPCs</td>
<td>Proanthocyanidins</td>
</tr>
<tr>
<td>P</td>
<td>Significance level</td>
</tr>
<tr>
<td>PAHs</td>
<td>Polycyclic aromatic hydrocarbons</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCV</td>
<td>Packed cell volume</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>pH</td>
<td>Power of Hydrogen</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cell</td>
</tr>
<tr>
<td>RH-123</td>
<td>Rhodamine 123</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>Rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>SCC</td>
<td>Squamous cell cancer</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>SITRA</td>
<td>South India Textile Research Association</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>SPR</td>
<td>Surface plasmon resonance</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>SRBC</td>
<td>Sheep Red Blood Cells</td>
</tr>
<tr>
<td>TBA</td>
<td>Thiobarbituric acid</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric acid reactive substances</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris buffered saline</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TNAU</td>
<td>Tamil Nadu Agricultural University</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>TPA</td>
<td>12-O-tetradecanoylphorbol-13-acetate</td>
</tr>
<tr>
<td>TPP</td>
<td>Triphenylphosphine</td>
</tr>
<tr>
<td>Tris-Hcl</td>
<td>Tris hydrochloride</td>
</tr>
<tr>
<td>Tris-KCl</td>
<td>Tris potassium chloride</td>
</tr>
<tr>
<td>Trypsin-EDTA</td>
<td>Trypsin ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet Visible</td>
</tr>
<tr>
<td>UV-Visible</td>
<td>Ultraviolet Visible</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume by Volume</td>
</tr>
<tr>
<td>W</td>
<td>Weight</td>
</tr>
<tr>
<td>WBC</td>
<td>White blood cell</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
</tbody>
</table>