TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>(i)</td>
</tr>
<tr>
<td>Certificate</td>
<td>(ii)</td>
</tr>
<tr>
<td>Abstract</td>
<td>(iii-v)</td>
</tr>
<tr>
<td>Declaration</td>
<td>(vi)</td>
</tr>
<tr>
<td>Copyright Transfer Certificate</td>
<td>(vii)</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>(viii-ix)</td>
</tr>
<tr>
<td>List of Tables</td>
<td>(xiii)</td>
</tr>
<tr>
<td>List of Figures</td>
<td>(xiv) – (xxiii)</td>
</tr>
<tr>
<td>List of Symbols and Abbreviations, Nomenclature etc.</td>
<td>(xxiv) – (xxv)</td>
</tr>
</tbody>
</table>

Chapter-1 Introduction

1.1 Food Packaging plastics and their properties 3-9
 1.1.1 Polyethylene terephthalate (PET) 3-4
 1.1.2 High-density polyethylene (HDPE) 4
 1.1.3 Polyvinyl chloride (PVC) 4-5
 1.1.4 Low-density polyethylene (LDPE) 5
 1.1.5 Polypropylene (PP) 5
 1.1.6 Polystyrene (PS) 6
 1.1.7 Polycarbonate (PC) 6-9

1.2 Indian Standards for food contact safety 9-13

1.3 Plastics and their additives 13-19
 1.3.1 Fillers 14
 1.3.2 Antiblock Agents 14
 1.3.3 Antioxidants 14-15
 1.3.4 Antistatic Agents 15-16
 1.3.5 Plasticizers 16
 1.3.6 Lubricants 17
 1.3.7 UV Stabilizer 17
 1.3.8 Heat Stabilizer 17
 1.3.9 Optical Property Modifiers 18
 1.3.10 Fire Retardants 18
1.3.11 Foaming Agents...18
1.3.12 Antimicrobial Agents..19
1.3.13 Impact Modifiers..19
1.4 Migrating Components in Plastic Packages.........................19-26
 1.4.1 Migration of Specific Components...............................20-26
 1.4.1.1 Plasticizers..20-22
 1.4.1.2 Antioxidants..22
 1.4.1.3 Monomers and oligomers.......................................22-23
 1.4.1.4 Stabilizers..23
 1.4.1.5 Heavy metals..24-26

Chapter-2 Literature Review...27-43

Chapter-3 Materials and Methods......................................44-52
 3.1 Samples and its processing...46-47
 3.2 Food simulating solvents used for leaching......................47-48
 3.3 Studied Parameters...48-51
 3.3.1 Physical state...48
 3.3.2 pH measurement...48-49
 3.3.3 Estimation of Global migration residue.......................49
 3.3.4 Estimation of Oxidisable Materials and Antioxidants........49-50
 3.3.5 Estimation of Buffering Capacity...............................50
 3.3.6 Estimation of Heavy Metals.......................................50-51
 3.4 Statistical analysis..51
 3.5 Equipment used in the study..51
 3.6 Chemicals used in the study..52

Chapter-4 Results and Discussions....................................53-112
 4.1 Physicochemical Assessment of Food containers...............54-112
 4.1.1 Change in Physical State.......................................55
 4.1.1.1 Conclusion on physical state..............................55
 4.1.2 pH measurement...56-68
 4.1.2.1 Elevated Condition (60±2°C for 2 hrs)....................56-60
 4.1.2.2 Ambient Condition (25±2°C for 24 hrs)...............60-63
 4.1.2.3 Refrigerated Condition (4±1°C for 72 hrs).............64-67
 4.1.2.4 Conclusion on pH..67-68
4.1.3 Estimation of Global Migration Residue
4.1.3.1 Elevated Condition (60±2°C for 2 hrs) 69-71
4.1.3.2 Ambient Condition (25±2°C for 24 hrs) 72-74
4.1.3.3 Refrigerated Condition (4±1°C for 72 hrs) 75-77
4.1.3.4 Conclusion on global migration residue 78
4.1.4 Estimation of Oxidisable Matters 78-89
4.1.4.1 Elevated Condition (60±2°C for 2 hrs) 78-81
4.1.4.2 Ambient Condition (25±2°C for 24 hrs) 81-84
4.1.4.3 Refrigerated Condition (4±1°C for 72 hrs) 84-87
4.1.4.4 Conclusion on Oxidisable Matter 87-89
4.1.5 Estimation of Buffering Capacity 89-95
4.1.5.1 Elevated Condition (60±2°C for 2 hrs) 89-91
4.1.5.2 Ambient Condition (25±2°C for 24 hrs) 91-93
4.1.5.3 Refrigerated Condition (4±1°C for 72 hrs) 93-94
4.1.5.4 Conclusion on Buffering capacity 94-95
4.1.6 Estimation of Heavy Metals 96-112
4.1.6.1 Elevated Condition (60±2°C for 2 hrs) 96-100
4.1.6.2 Ambient Condition (25±2°C for 24 hrs) 101-104
4.1.6.3 Refrigerated Condition (4±1°C for 72 hrs) 105-108
4.1.6.4 Conclusion on Heavy metals 109-112

Chapter-5 Conclusion 113-115
Bibliography 116-130
Appendices 131-132
List of Publication 133
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Mechanical properties of common Food plastics.</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>SPI Resin Identification codes.</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Examples of some common additives and their effects on plastics</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Food categorisation and Food simulants.</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Time- Temperature condition in global migration Tests.</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical state of samples of food containers after leachate preparation.</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig No.</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Chemical reaction involving preparation of PET.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Chemical reaction involving preparation of PVC.</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Chemical reaction involving preparation of PP.</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Chemical reaction involving preparation of PS</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Chemical reaction involving preparation of PC</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Common antioxidants Irganox-1010 and Irgafos-168.</td>
<td>15</td>
</tr>
<tr>
<td>1.7</td>
<td>Common plasticizer DEHA and DOP.</td>
<td>16</td>
</tr>
<tr>
<td>1.8</td>
<td>Common UV stabilizers Benzophenone and Benzotriazoles.</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>Difference in pH of leachates of food containers to their control at 60±2°C for 2 hrs, using double distilled water as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>Difference in pH of leachates of food containers to their control at 60±2°C for 2 hrs, using 3% acetic acid as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>Difference in pH of leachates of food containers to their control at 60±2°C for 2 hrs, using 8% ethanol as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Difference in pH of leachates of food containers to their control at 60±2°C for 2 hrs, using 0.9% NaCl as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.</td>
<td>59</td>
</tr>
</tbody>
</table>
4.5 Difference in pH of leachates of food containers to their control at 60±2°C for 2 hrs, using 5% Na₂CO₃ as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.6 Difference in pH of leachates of food containers to their control at 25±2°C for 24 hrs, using double distilled water as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.7 Difference in pH of leachates of food containers to their control at 25±2°C for 24 hrs, using 3% acetic acid as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.8 Difference in pH of leachates of food containers to their control at 25±2°C for 24 hrs, using 8% ethanol as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.9 Difference in pH of leachates of food containers to their control at 25±2°C for 24 hrs, using 0.9% NaCl as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.10 Difference in pH of leachates of food containers to their control at 25±2°C for 24 hrs, using 5% Na₂CO₃ as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.11 Difference in pH of leachates of food containers to their control at 4±1°C for 72 hrs, using double distilled water as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.12 Difference in pH of leachates of food containers to their control at 4±1°C for 72 hrs, using 3% acetic acid as simulating solvent.
The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.13 Difference in pH of leachates of food containers to their control at 4±1°C for 72 hrs, using 8% ethanol as simulating solvent.

4.14 Difference in pH of leachates of food containers to their control at 4±1°C for 72 hrs, using 0.9% NaCl as simulating solvent.

4.15 Difference in pH of leachates of food containers to their control at 4±1°C for 72 hrs, using 5% Na₂CO₃ as simulating solvent.

4.16 GMR in the leachates of food container at 60±2°C for 2 hrs, using double distilled water as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.17 GMR in the leachates of food container at 60±2°C for 2 hrs, using 3% acetic acid as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.18 GMR in the leachates of food container at 60±2°C for 2 hrs, using 8% ethanol as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.19 GMR in the leachates of food container at 60±2°C for 2 hrs, using 0.9% NaCl as simulating solvent. The results were reported as a mean ± SD from three set of experiments. *Significance at p<0.05 as compared with control.
4.20 GMR in the leachates of food container at 60±2°C for 2 hrs, using 5% Na₂CO₃ as simulating solvent. The results were reported as a mean ± SD from three set of experiments.
*Significance at p<0.05 as compared with control.

4.21 GMR in the leachates of food container at 25±2°C for 24 hrs, using double distilled water as simulating solvent. The results were reported as a mean ± SD from three set of experiments.
*Significance at p<0.05 as compared with control.

4.22 GMR in the leachates of food container at 25±2°C for 24 hrs, using 3% acetic acid as simulating solvent. The results were reported as a mean ± SD from three set of experiments.
*Significance at p<0.05 as compared with control.

4.23 GMR in the leachates of food container at 25±2°C for 24 hrs, using 8% ethanol as simulating solvent. The results were reported as a mean ± SD from three set of experiments.
*Significance at p<0.05 as compared with control.

4.24 GMR in the leachates of food container at 25±2°C for 24 hrs, using 0.9% NaCl as simulating solvent. The results were reported as a mean ± SD from three set of experiments.
*Significance at p<0.05 as compared with control.

4.25 GMR in the leachates of food container at 25±2°C for 24 hrs, using 5% Na₂CO₃ as simulating solvent. The results were reported as a mean ± SD from three set of experiments.
*Significance at p<0.05 as compared with control.

4.26 GMR in the leachates of food container at 4±1°C for 72 hrs, using double distilled water as simulating solvent. The results were reported as a mean ± SD from three set of experiments.
*Significance at p<0.05 as compared with control.

4.27 GMR in the leachates of food container at 4±1°C for 72 hrs, using 3% acetic acid as simulating solvent. The results were
reported as a mean ± SD from three set of experiments.
*Significance at p<0.05 as compared with control.

4.28 GMR in the leachates of food container at 4±1°C for 72 hrs, using 8% ethanol as simulating solvent. The results were reported as a mean ± SD from three set of experiments.
*Significance at p<0.05 as compared with control.

4.29 GMR in the leachates of food container at 4±1°C for 72 hrs, using 0.9% NaCl as simulating solvent. The results were reported as a mean ± SD from three set of experiments.
*Significance at p<0.05 as compared with control.

4.30 GMR in the leachates of food container at 4±1°C for 72 hrs, using 5% Na₂CO₃ as simulating solvent. The results were reported as a mean ± SD from three set of experiments.
*Significance at p<0.05 as compared with control.

4.31 Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 60±2°C for 2 hrs, using double distilled water as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.32 Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 60±2°C for 2 hrs, using 3% acetic acid as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.33 Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 60±2°C for 2 hrs, using 8% ethanol as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.
4.34 Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 60±2°C for 2 hrs, using 0.9% NaCl as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.35 Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 25±2°C for 24 hrs, using double distilled water. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.36 Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 25±2°C for 24 hrs, using 3% acetic acid as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.37 Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 25±2°C for 24 hrs, using 8% ethanol as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.38 Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 25±2°C for 24 hrs, using 0.9% NaCl as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

4.39 Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 4±1°C for 72 hrs, using double distilled water as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.
Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 4±1°C for 72 hrs, using 3% acetic acid as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 4±1°C for 72 hrs, using 8% ethanol as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

Volume of titrant (hypo solution) consumed (ml) in leachates of food containers at 4±1°C for 72 hrs, using 0.9% NaCl as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

Volume of titrant (0.01 N NaOH) consumed (ml) in leachates of food containers at 60±2°C for 2 hrs, using 3% acetic acid as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

Volume of titrant (0.01 N HCl) consumed (ml) in leachates of food containers at 60±2°C for 2 hrs, using 5% Na2CO3 as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.

Volume of titrant (0.01 N NaOH) consumed (ml) in leachates of food containers at 25±2°C for 24 hrs, using 3% acetic acid as simulating solvent. The results were reported as a mean ±SD from three set of experiments. *Significance at p<0.05 as compared with control.
4.46 Volume of titrant (0.01 N HCl) consumed (ml) in leachates of food containers at 25±2°C for 24 hrs, using 5% Na₂CO₃ as simulating solvent. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.47 Volume of titrant (0.01 N NaOH) consumed (ml) in leachates of food containers at 4±1°C for 72 hrs, using 3% acetic acid as simulating solvent. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.48 Volume of titrant (0.01 N HCl) consumed (ml) in leachates of food containers at 4±1°C for 72 hrs, using 5% Na₂CO₃ as simulating solvent. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.49 The concentration of metals (ppm) in double distilled water at 60±2°C for 2 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.50 The concentration of metals (ppm) in 3% acetic acid at 60±2°C for 2 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.51 The concentration of metals (ppm) in 8% ethanol at 60±2°C for 2 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.52 The concentration of metals (ppm) in 0.9% NaCl at 60±2°C for 2 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as
compared with control.

4.53 The concentration of metals (ppm) in 5% Na₂CO₃ at 60±2°C for 2 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.54 The concentration of metals (ppm) in double distilled water at 25±2°C for 24 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.55 The concentration of metals (ppm) in 3% acetic acid at 25±2°C for 24 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.56 The concentration of metals (ppm) in 8% ethanol at 25±2°C for 24 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.57 The concentration of metals (ppm) in 0.9% NaCl at 25±2°C for 24 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.58 The concentration of metals (ppm) in 5% Na₂CO₃ at 25±2°C for 24 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.

4.59 The concentration of metals (ppm) in double distilled water at 4±1°C for 72 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control.
4.60 The concentration of metals (ppm) in 3% acetic acid at 4±1°C for 72 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control. 107

4.61 The concentration of metals (ppm) in 8% ethanol at 4±1°C for 72 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control. 107

4.62 The concentration of metals (ppm) in 0.9% NaCl at 4±1°C for 72 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control. 108

4.63 The concentration of metals (ppm) in 5% Na₂CO₃ at 4±1°C for 72 hrs. The results were reported as a mean ±SD from three set of experiments. * Significance at p<0.05 as compared with control. 108
LIST OF SYMBOLS & ABBREVIATIONS

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>SYMBOL</th>
<th>FULL FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>2.</td>
<td>AAS</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>3.</td>
<td>ABS</td>
<td>Acrylonitrile-Butadiene-Styrene</td>
</tr>
<tr>
<td>4.</td>
<td>BC</td>
<td>Buffering Capacity</td>
</tr>
<tr>
<td>5.</td>
<td>BIS</td>
<td>Bureau of Indian Standards</td>
</tr>
<tr>
<td>6.</td>
<td>DEHA</td>
<td>di-2-ethylhexyl adipate</td>
</tr>
<tr>
<td>7.</td>
<td>DEHP</td>
<td>di-2-ethylhexyl phthalate</td>
</tr>
<tr>
<td>8.</td>
<td>DOP</td>
<td>dioctyl phthalate</td>
</tr>
<tr>
<td>9.</td>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>10.</td>
<td>GMR</td>
<td>Global Migration Residue.</td>
</tr>
<tr>
<td>11.</td>
<td>HDPE</td>
<td>High-density polyethylene</td>
</tr>
<tr>
<td>12.</td>
<td>IAS</td>
<td>Intentionally Added Substances</td>
</tr>
<tr>
<td>13.</td>
<td>IP</td>
<td>Indian Pharmacopeia</td>
</tr>
<tr>
<td>14.</td>
<td>LDPE</td>
<td>Low-density polyethylene</td>
</tr>
<tr>
<td>15.</td>
<td>NIAS</td>
<td>Non-Intentionally Added Substances</td>
</tr>
<tr>
<td>16.</td>
<td>NP</td>
<td>Nonyl phenol</td>
</tr>
<tr>
<td>17.</td>
<td>OM</td>
<td>Oxidisable Matter</td>
</tr>
<tr>
<td>18.</td>
<td>PC</td>
<td>Polycarbonate</td>
</tr>
<tr>
<td>19.</td>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>20.</td>
<td>PET</td>
<td>Polyethylene terephthalate</td>
</tr>
<tr>
<td></td>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>21</td>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>22</td>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>23</td>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>24</td>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>25</td>
<td>USP</td>
<td>United State Pharmacopeia</td>
</tr>
<tr>
<td>26</td>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
<tr>
<td>27</td>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>28</td>
<td>°C</td>
<td>Degree Centigrade</td>
</tr>
<tr>
<td>29</td>
<td><</td>
<td>Less Than</td>
</tr>
<tr>
<td>30</td>
<td>></td>
<td>Greater Than</td>
</tr>
<tr>
<td>31</td>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>32</td>
<td>ml</td>
<td>Milliliters</td>
</tr>
<tr>
<td>33</td>
<td>ppm</td>
<td>Parts Per Millions</td>
</tr>
</tbody>
</table>