REFERENCES


Boyce WH, King J and Fielden M (1962). Total nondialyzable solids in human urine. XIII. Immunological detection of a component peculiar to renal calculus matrix and to


Cerini C, S Geider, B Dussol, C Hennequin, M Daudon, S Veesler, S Nitsche, R Boistelle,


Edyvane KA, RL Ryall and VR Marshall (1983). The contribution of bladder secretions to


Gohel MD, Shum DKY and Li MK (1992). The dual effect of urinary macromolecules on
the crystallization of calcium oxalate endogenous in urine. *Urol Res* 20, 13-17.


of osteopontin isoforms: an analysis by scanning confocal interference microscopy. 

*Calcif Tissue Int* 84(3), 240-8.


Priyadarshini, Singh SK, Tandon Chanderdeep (2009). Mass spectrometric identification of
human phosphate cytidylyltransferase 1 as a novel calcium oxalate crystal growth

Qiu SR, Wierzbicki A, Orme CA et al. (2004). Molecular modulation of calcium oxalate
crystallization by osteopontin and citrate. *PNAS* 101,1811-1815.


Roberts SD and Resnick MI (1986) Glycosaminoglycans content of stone matrix. *J Urol*
135, 1078-1083.

*Calcif Tissu Res* 11, 311-322.

Robertson WG and Peacock M (1972). Calcium oxalate crystalluria and inhibitors of

Roberts SD and Resnick MI (1986). Glycosaminoglycans content of stone matrix. *J Urol*
135, 1078-1083.

Robertson WG *et al* (2000). Possible causes of the changing pattern of the age of onset of
urinary stone disease in the UK. In *Urolithiasis 2000* (ed AL Rodgers, BE Hibbert, B


Urinary crystallization inhibitors do not prevent crystal binding. *J Urol* 167, 1844-1847.


Shum DKY, Gohel MDI and Tam PC (1999). Hyaluronans: Crystallization-promoting


